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1. Introduction

When a highly energetic parton travels through a quark-gluon plasma (QGP), it losses its
energy due to, in particular, elastic interactions with plasma constituents. This is called collisional
energy loss and was computed for equilibrium QGP twenty years ago, see the review [1] and the
handbook [2]. The quark-gluon plasma produced in relativistic heavy-ion collisions, however,
reaches a state of local equilibrium only after a short but finite time interval, and during this period
the momentum distribution of plasma partons is anisotropic. It is important to note that a plasma
with an anisotropic momentum distribution is unstable (for a review see [4]). Collisional energy
loss has been computed for an anisotropic QGP in Ref. [3], but the fact that unstable systems are
explicitly time dependent as unstable modes exponentially grow in time was not taken into account.

We have developed an approach, see [5, 6] for a preliminary account, where energy loss is
studied as an initial value problem. The approach is applicable to plasma systems evolving quickly
in time. We compute the energy loss by treating the parton as an energetic classical particle with
SU(Nc) color charge. For an equilibrium plasma the known result is recovered and for an unstable
plasma the energy loss is shown to have contributions which exponentially grow in time. In Refs.
[5, 6] we have calculated the energy loss in a two-stream system which is unstable due to longi-
tudinal chromoelectric modes and found that it manifests strong time and directional dependence.
In this paper we focus on an extremely prolate quark-gluon plasma with momentum distribution
infinitely elongated in one (beam) direction. Such a system is unstable due to transverse chro-
momagnetic modes and the spectrum of collective excitations can be obtained in explicit analytic
form. The system has thus nontrivial dynamics but the computation of energy loss is relatively
simple. After a brief presentation of our approach, we show some of our results. The energy loss
grows exponentially and after some time its magnitude is much bigger than in equilibrium plasma.

2. Formalism

Our approach is classical and thus we start with the Wong equations [7] describing the motion
of classical parton in a chromodynamic field.

2.1 General energy-loss formula

The Wong equations [7] read

dxµ(τ)

dτ
= uµ(τ), (2.1)

d pµ(τ)

dτ
= gQa(τ)Fµν

a
(
x(τ)

)
uν(τ), (2.2)

dQa(τ)

dτ
= −g f abcuµ(τ)Aµ

b

(
x(τ)

)
Qc(τ), (2.3)

where τ , xµ(τ), uµ(τ) and pµ(τ) are, respectively, the parton’s proper time, its trajectory, four-
velocity and four-momentum; Fµν

a and Aµ
a denote the chromodynamic field strength tensor and

four-potential along the parton’s trajectory and Qa is the classical color charge of the parton; g is
the coupling constant and αs ≡ g2/4π is assumed to be small. We also assume that the potential
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vanishes along the parton’s trajectory i.e. our gauge condition is uµ(τ)Aµ
a
(
x(τ)

)
= 0. Due to

Eq. (2.3) the classical parton’s charge Qc(τ) is a constant of motion within the chosen gauge.
The energy loss is given directly by Eq. (2.2) with µ = 0. Using the time t = γτ instead

of the proper time τ and replacing the strength tensor Fµν
a by the chromoelectric Ea(t,r) and

chromomagnetic Ba(t,r) fields, Eq. (2.2) gives

dE(t)
dt

= gQaEa(t,r(t)) ·v, (2.4)

where v is the parton’s velocity. Since we consider a parton which is very energetic, v is assumed
to be constant and v2 = 1, but the parton’s momentum and energy vary.

Since we deal with an initial value problem, we apply to the field and current not the usual
Fourier transformation but the one-sided Fourier transformation defined as

f (ω,k) =
∫

∞

0
dt
∫

d3rei(ωt−k·r) f (t,r), (2.5)

f (t,r) =
∫

∞+iσ

−∞+iσ

dω

2π

∫ d3k
(2π)3 e−i(ωt−k·r) f (ω,k), (2.6)

where the real parameter σ > 0 is chosen is such a way that the integral over ω is taken along a
straight line in the complex ω−plane, parallel to the real axis, above all singularities of f (ω,k).
Introducing the current generated by the parton ja(t,r) = gQavδ (3)(r− vt), and using Eqs. (2.5,
2.6), Eq. (2.4) can be rewritten:

dE(t)
dt

= gQa
∫

∞+iσ

−∞+iσ

dω

2π

∫ d3k
(2π)3 e−i(ω−ω̄)t Ea(ω,k) ·v, (2.7)

where ω̄ ≡ k ·v.
The next step is to compute the chromoelectric field Ea. Applying the one-sided Fourier

transformation to the linearized Yang-Mills equations, which represent QCD in the Hard Loop
approximation, we get the chromoelectric field given as

E i
a(ω,k) =−i(Σ−1)i j(ω,k)

[
ω j j

a(ω,k)+ ε
jklkkBl

0a(k)−ωD j
0a(k)

]
, (2.8)

where B0 and D0 are the initial values of the chromomagnetic field and the chromoelectric induc-
tion, and Di

a(ω,k) = ε i j(ω,k)E j
a(ω,k) with ε i j(ω,k) being chromodielectric tensor which equals

ε
i j(ω,k) = δ

i j +
g2

2ω

∫ d3 p
(2π)3

vi

ω−k ·v+ i0+
∂ f (p)
∂ pk

[(
1− k ·v

ω

)
δ

k j +
kkv j

ω

]
,

where f (p) is the momentum distribution of plasma constituents. The color indices a,b are dropped
as ε(ω,k) is a unit matrix in color space. The matrix Σi j(ω,k) in Eq. (2.8) is defined

Σ
i j(ω,k)≡−k2

δ
i j + kik j +ω

2
ε

i j(ω,k). (2.9)

Substituting the expression (2.8) into Eq. (2.7), we get the formula

dE(t)
dt

= gQavi
∫

∞+iσ

−∞+iσ

dω

2πi

∫ d3k
(2π)3 e−i(ω−ω̄)t(Σ−1)i j(ω,k) (2.10)

×
[ iωgQav j

ω− ω̄
+ ε

jklkkBl
0a(k)−ωD j

0a(k)
]
.

As seen, the integral over ω is controlled by the poles of the matrix Σ−1(ω,k) which represent the
collective modes of the system.
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Figure 1: The parton energy loss per unit time in equilibrium plasma as a function of kmax
µ

.

2.2 Equilibrium plasma

When the plasma is stable, all modes are damped and the poles of Σ−1(ω,k) are located in the
lower half-plane of complex ω . Consequently, the contributions to the energy loss corresponding
to the poles of Σ−1(ω,k) exponentially decay in time. The only stationary contribution is given by
the pole ω = ω̄ ≡ k · v. Therefore, the terms in Eq. (2.10), which depend on the initial values of
the fields, are neglected and Eq. (2.10) provides

dE
dt

=−ig2CR

∫ d3k
(2π)3

ω̄

k2

[
1

εL(ω̄,k)
+

k2v2− ω̄2

ω̄2εT (ω̄,k)−k2

]
, (2.11)

where the color factor CR, which equals N2
c−1
2Nc

for a quark and Nc for a gluon, results from the
averaging over colors of the test parton. The formula (2.11) agrees with the standard energy loss
due to soft collisions in equilibrium QGP [2].

To compare the energy loss in an unstable plasma to that in an equilibrium one, we have
computed the integral in Eq. (2.11) numerically using cylindrical coordinates, which will also be
used for the prolate system. Since the integral is known to be logarithmically divergent, it has been
taken over a finite domain such that −kmax ≤ kL ≤ kmax and 0 ≤ kT ≤ kmax. The energy loss in an
equilibrium plasma of massless constituents can be expressed through the Debye mass, which we
write as

µ
2 ≡ g2

∫ d3 p
(2π)3

f (p)
|p|

. (2.12)

We define dimensionless variables by scaling dimensionful quantities by the Debye mass. In Fig. 1
we show the energy loss in equilibrium QGP divided by g2µ2 as a function of kmax

µ
computed for

g = 1 and CR = Nc = 3.

2.3 Unstable plasma

When the plasma is unstable, the matrix Σ−1(ω,k) has poles in the upper half-plane of com-
plex ω , and the contributions to the energy loss from these poles grow exponentially in time. The
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terms in Eq. (2.10) which depend on the initial values of the fields D and B cannot be neglected, as
they exponentially grow in time. Using the linearized Yang-Mills equations, the initial values B0

and D0 are expressed through the current and we obtain

dE(t)
dt

= g2CRvivl
∫

∞+iσ

−∞+iσ

dω

2π

∫ d3k
(2π)3 e−i(ω−ω̄)t(Σ−1)i j(ω,k) (2.13)

×
[

ωδ jl

ω− ω̄
− (k jkk−k2

δ
jk)(Σ−1)kl(ω̄,k)+ω ω̄ ε

jk(ω̄,k)(Σ−1)kl(ω̄,k)
]
,

which gives the energy loss of a parton in an unstable quark-gluon plasma.

2.4 Inversion of Σ

When the anisotropy of the momentum distribution of plasma constituents is controlled by a
single (unit) vector n, it is not difficult to invert the matrix Σ. Following [9], we introduce the vector
nT defined as

ni
T ≡

(
δ

i j− kik j

k2

)
n j (2.14)

and we use the basis of four symmetric tensors

Ai j(k) = δ
i j− kik j

k2 , Bi j(k) =
kik j

k2 , Ci j(k,n) =
ni

T n j
T

n2
T

, Di j(k,n) = kin j
T + k jni

T . (2.15)

Since the matrix Σ is symmetric, it can be decomposed as Σ = aA+ bB+ cC + d D, where the
coefficients a, b, c and d are found from the equations

ki
Σ

i jk j = k2b, ni
T Σ

i jn j
T = n2

T (a+ c), ni
T Σ

i jk j = n2
T k2d, TrΣ = 2a+b+ c. (2.16)

The inverse matrix is found to be

Σ
−1 =

1
a

A+
−a(a+ c)B+(−d2k2n2

T +bc)C+ad D
a(d2k2n2

T −b(a+ c))
, (2.17)

and consequently, the poles of the matrix Σ−1 are given by the following dispersion equations

a = 0 , d2k2n2
T −b(a+ c) = 0. (2.18)

Writing down the energy-loss formula (2.13) in terms of the projectors A,B,C,D we obtain
the form

dE(t)
dt

= ig2CRv
∫

∞+iσ

−∞+iσ

dω

2πi

∫ d3k
(2π)3 e−i(ω−ω̄)t

(1
a

A+
−a(a+ c)B+(−d2k2n2

T +bc)C+ad D
a(d2k2n2

T −b(a+ c))

)
×
[

ω

ω− ω̄
+

ω

ω̄
+

ω + ω̄

ω̄
k2
(1

ā
A+

(−d̄2k2n2
T + b̄c̄)C+ ād̄ AD

ā(d̄2k2n2
T − b̄(ā+ c̄))

)]
v, (2.19)

where the coefficients a,b,c,d are computed at (ω,k) and the coefficients ā, b̄, c̄, d̄ at (ω̄,k). The
formula (2.19) will be used in the subsequent section to compute the energy loss in an extremely
prolate QGP.
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3. Extremely prolate plasma

Anisotropy is a generic feature of the parton momentum distribution in heavy-ion collisions.
At the early stage, when partons emerge from the incoming nucleons, the momentum distribution is
strongly elongated along the beam - it has a prolate shape with the average transverse momentum
being much smaller than the average longitudinal one. Due to free streaming, the distribution
evolves in the local rest frame to a form which is squeezed along the beam - it has oblate shape
with the average transverse momentum being much larger than the average longitudinal one. We
consider here the extremely prolate momentum distribution which is either infinitely elongated in
the longitudinal direction (defined be the unit vector n) or infinitely squeezed in the transverse
directions. In this case the spectrum of collective excitations can be found analytically.

3.1 Momentum distribution

The extremely prolate momentum distribution can be written as

f (p) = δ
(
p2− (p ·n)2) h(p ·n) , (3.1)

where h(x) is any positive even function such that
∫

d3 f (p) is finite. The integral in Eq. (2.12)
can be used to define a mass parameter for either isotropic or anisotropic momentum distributions,
although in the later case µ−1 cannot be interpreted as the screening length. Applying the prolate
distribution a different mass parameter denoted as m naturally appears. It is related to µ as m2 ≡
1
2 µ2.

Since the velocity v of a massless parton as given by the distribution (3.1) is v = n for p ·n > 0
and v =−n for p ·n < 0, the matrix Σ defined by Eq. (2.9) is found to be

Σ
i j(ω,k) = (ω2−m2−k2)δ i j + kik j − m2k ·n

ω2− (k ·n)2 (k
in j +nik j) (3.2)

−
m2
(
ω2 +(k ·n)2

)
(k2−ω2)(

ω2− (k ·n)2
)2 nin j,

and the coefficients a,b,c,d are

a(ω,k) = ω
2−m2−k2, (3.3)

b(ω,k) = ω
2−m2− 2m2(k ·n)2

ω2− (k ·n)2 −
m2
(
ω2 +(k ·n)2

)
(k2−ω2)(

ω2− (k ·n)2
)2

(k ·n)2

k2 , (3.4)

c(ω,k) =
m2(ω2 +(k ·n)2)(k2−ω2)

(ω2− (k ·n)2)2

(
(k ·n)2

k2 −1
)
, (3.5)

d(ω,k) = − m2(k ·n)
ω2− (k ·n)2 −

m2
(
ω2 +(k ·n)2

)
(k2−ω2)(

ω2− (k ·n)2
)2

(k ·n)
k2 . (3.6)
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Figure 2: The parton energy loss per unit time as a function of time for three angles Θ between the parton’s
velocity v and the axis z. The red points correspond to Θ = 0, the blue ones to Θ = π/12 and the purple
points to Θ = π/6. The solid lines represent the exponential fits to the computed points.

3.2 Collective excitations

The dispersion relations are obtained from Eqs. (2.18) with the coefficients given by Eqs. (3.3-
3.6). The first of these equations provides ω2

2 (k) = m2 +k2. Although the second equation looks
rather complicated, it has three relatively simple solutions

ω
2
1 (k) = m2 +(k ·n)2 , (3.7)

ω
2
±(k) =

1
2

(
k2 +(k ·n)2±

√
k4 +(k ·n)4 +4m2k2−4m2(k ·n)2−2k2(k ·n)2

)
, (3.8)

which hold under the condition ω2 6= (k ·n)2. The modes ω1, ω2 and ω+, are always stable. The
solution ω2

− is negative when m2k2 > m2(k · n)2 + k2(k · n)2. Writing ω2
− = −γ2, 0 < γ ∈ R,

the solutions are ±iγ . The first is the Weibel unstable mode and the second is an overdamped
mode. Denoting the angle between k and n as θ , the condition for the existence of an instability
is cos2 θ < m2

m2+k2 . One can show that for fixed k2 the instability growth γ is maximal when k⊥ n.
Collective excitations in the extremely prolate QGP were earlier studied in [10] using a method
different than ours.

Using Eqs. (3.7) and (3.8) one can write

a
(
d2k2n2

T −b(a+ c)
)
=−

ω2
(
ω2−ω2

1 (k)
)(

ω2−ω2
2 (k)

)(
ω2−ω2

+(k)
)(

ω2−ω2
−(k)

)
ω2− (k ·n)2 (3.9)

and from Eq. (2.19) one therefore sees that the energy loss in the extremely prolate system is
controlled by the double pole at ω = 0 and 8 single poles: ω = ±ω1, ω = ±ω2, ω = ±ω+,
ω = ±ω−. Since the collective modes are known analytically, the integral over ω in Eq. (2.19)
can be computed analytically as well. The remaining integrals are performed numerically.
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3.3 Numerical results

To compute the integral over k in Eq. (2.19), we use cylindrical coordinates with the z axis
along the vector n. Since the integral is divergent (as is the case in equilibrium (2.11)), we choose
a finite domain such that −kmax ≤ kL ≤ kmax and 0 ≤ kT ≤ kmax with kmax = 5µ . The values of
remaining parameters are: g = 1, CR = Nc = 3. In Fig. 2 we show the parton’s energy loss per unit
time as a function of time for three different orientations of the parton’s velocity v with respect to
the z axis. The energy loss manifests a strong directional dependence and it exponentially grows in
time, which indicates the effect of the unstable modes. After a sufficiently long time, the magnitude
of energy loss much exceeds that in equilibrium plasma which, as shown in Fig. 1, equals 0.18 for
kmax = 5µ .

4. Conclusions

We have developed a formalism where the energy loss of a fast parton in a plasma medium
is found as the solution of an initial value problem. The formalism, which allows one to obtain
the energy loss in an unstable plasma, is applied to an extremely prolate quark-gluon plasma with
momentum distribution infinitely elongated in the z direction. This system is unstable due to chro-
momagnetic transverse modes. The energy loss per unit length of a highly energetic parton is not
a constant, as in the equilibrium plasma, but it exponentially grows in time and exhibits a strong
directional dependence. The magnitude of the energy loss can much exceed the equilibrium value.
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