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According to the Color Glass Condensate approach to relativistic heavy-
ion collisions, the earliest phase of the collision is a glasma which is made of
highly populated gluon fields that can be treated classically. Using a proper
time expansion, we study analytically various properties of the glasma. In
particular, we compute the glasma energy-momentum tensor which allows
us to obtain the energy density, longitudinal and transverse pressure, col-
lective flow, and angular momentum. We also study the role of the glasma
in jet quenching by computing collisional energy loss and transverse mo-
mentum broadening.

DOI:10.5506/APhysPolB.55.4-A3

1. Introduction

The earliest phase of relativistic heavy-ion collisions is the least under-
stood. The phenomena occurring during this phase are largely ‘forgotten’
due to the subsequent temporal evolution of the system, and consequently,
experiments provide very limited information about its properties. What
happens during this phase is usually parametrized using a few of its pri-
mary characteristics, such as an energy density profile, and used only to
provide initial conditions for the later, much better understood, hydrody-
namic phase. The earliest phase, however, is of special interest for several
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reasons. At very early times, the system is strongly anisotropic, far from
thermodynamic equilibrium, and the energy density reaches its maximal val-
ues. The processes which take place in this phase can significantly affect the
subsequent evolution of the system and its final-state characteristics.

Several different strategies have been used to understand and describe
the earliest phase of relativistic heavy-ion collisions. The framework of the
Color Glass Condensate effective theory [1–3], see also the review [4], is com-
monly applied. The theory is based on a separation of scales between hard
valence partons and soft gluons. The system that exists at very early times
is called a ‘glasma’. It consists of large occupation number, coherent chro-
modynamic fields that are essentially classical. The dynamics of the glasma
fields is determined by the classical Yang–Mills (YM) equations with sources
provided by the valence partons. To calculate observables, one performs av-
eraging over a Gaussian distribution of color charges within each colliding
nucleus. The original McLerran–Venugopalan (MV) model assumed a source
charge density that was homogeneous in the transverse plane and infinitely
Lorentz contracted. A description of real finite-size nuclei requires includ-
ing the effects of varying nuclear density in the transverse plane. It is also
necessary to take into account a finite width of the sources across the light
cone [5, 6].

Properties of the glasma have been studied for over two decades using
more and more advanced numerical simulations, see Refs. [7–11] as examples
of recent works in this direction. There are also analytic approaches, but
they are usually very limited in their applicability. We use a method designed
to study the earliest phase of relativistic heavy-ion collisions that involves
an expansion of the YM equations in powers of the proper time τ , which is
treated as a small parameter1. This method, which is sometimes called a
‘near field expansion’, was proposed in [12] and further developed in [13–17].
Results are valid only for small values of τ but they are analytic and free of
artifacts of numerical computation like those caused by taking a continuous
limit in the case of lattice calculations.

Some important characteristics of glasma can be calculated from the
energy-momentum tensor expressed through the classical chromodynamic
fields and averaged over the color configurations of the colliding nuclei. One
can obtain in this way the glasma energy density, and the transverse and
longitudinal pressures, which give us insight into the process of the system’s
equilibration. The energy and momentum fluxes, which are also calculated
from the energy-momentum tensor, tell us how the system expands and how
collective flow develops. The angular momentum carried by the glasma can
also be found from the energy-momentum tensor.

1 The dimensionless small parameter is the proper time times the saturation scale.
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Partons with high transverse momenta and heavy quarks are produced
in relativistic heavy-ion collisions only through hard interactions with large
momentum transfer at the earliest phase of the collision. The production
mechanisms of these hard probes are thus described by perturbative QCD.
They propagate through the evolving medium probing QCD matter at dif-
ferent phases throughout the whole system’s evolution. During this propa-
gation, heavy quarks and high-pT partons lose a substantial fraction of their
initial energy which causes a significant suppression of final high-pT hadrons,
commonly known as jet quenching. The suppression of high-pT hadrons is
treated as a signal of the formation of quark–gluon plasma, because only a
deconfined state of matter could produce such significant braking of hard
partons.

The energy loss of a probe is caused by collisions and/or radiation and
depends on the medium content and its dynamics. The medium produced
in heavy-ion collisions quickly approaches equilibrium, within about 1 fm,
and the long-lasting equilibrium phase, with the lifetime of approximately
10 fm, is expected to be mostly responsible for jet quenching. However, the
energy density of the transient non-equilibrium phase is significantly higher
than that of the equilibrium phase and it is therefore important to consider
the possibility that the non-equilibrium phase plays an important role. Two
distinct pre-equilibrium phases can be identified: one just before the thermal
quark–gluon plasma is formed, when the medium consists of quasi-particles
with non-equilibrium distributions of momenta, and the strict earliest phase,
called glasma, when the medium is described in terms of strong classical
gluon fields rather than partons. We are interested in the glasma phase.

In a series of papers [18–23], we have used the small-τ expansion exten-
sively to describe the earliest phase of relativistic heavy-ion collisions. The
papers [18, 19, 23] are devoted to various characteristics of glasma which
are calculated from the energy-momentum tensor. These characteristics in-
clude: the energy density, longitudinal and transverse pressure, collective
flow, and angular momentum. In the articles [20–23], we studied the role of
the glasma in jet quenching, computing the collisional energy loss and the
transverse momentum broadening. The idea behind this series of lectures
is to present the whole project in a systematic and coherent way. We also
update some of our results and add some discussion on the regime of validity
of our calculation.

In Section 2, we present the formalism we use to describe the glasma. We
discuss the equations of motion, the boundary conditions, and the proper
time expansion, and we explain how the energy-momentum tensor is calcu-
lated. Correlators of pre-collision potentials of incoming nuclei, which are
the building blocks of our computational method, are discussed in detail. We
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pay special attention to their regularization in both the infrared and ultra-
violet domains. We also discuss how the correlators are modified when the
effect of the finite size of the colliding nuclei is taken into account.

Section 3 is devoted to glasma characteristics obtained from the energy-
momentum tensor. We present our numerical results for the energy density,
pressures, and energy fluxes. We discuss the evolution of glasma anisotropy
and show that the time dependence of the radial and azimuthally asymmet-
ric flow of the glasma resembles hydrodynamic behavior. We compute the
glasma angular momentum and demonstrate that only a small fraction of
the angular momentum of the incoming nuclei is transferred to glasma, and
consequently, the system does not rotate significantly.

In Section 4, the role of glasma in jet quenching is studied. We first
discuss the Fokker–Planck equation, which is our main theoretical tool, and
a physical picture of parton transport across the glasma. Our numerical
results on collisional energy loss dE/dx and momentum broadening q̂ are
shown, and their dependence on the adopted regularization procedure is
analyzed. The gauge dependence of our results is also briefly discussed.
We finally show that the glasma has a sizable impact on jet quenching,
comparable to that of the long-lasting equilibrium phase.

Our conclusions are collected in Section 5.
Throughout the article, we use the natural system of units with c =

ℏ = kB = 1. We neglect henceforth the prefix ‘chromo’ when referring to
chromoelectric or chromomagnetic fields. Since we study QCD only, this
should not cause confusion. Notational details and a collection of some
useful formulas can be found in Appendix A.

2. Formalism

In this section, we present the formalism of the CGC effective theory
that we use and our computational method.

We consider a collision of two heavy ions moving towards each other
along the z-axis and colliding at t = z = 0. The transverse coordinates are
denoted by the two-vector x⃗⊥. The time and longitudinal coordinates (t, z)
can be written in two different combinations which will both be useful: in
different situations, we use either light-cone coordinates, x± = (t ± z)/

√
2,

or Milne coordinates, τ =
√
t2 − z2 =

√
2x+x− and η = ln(x+/x−)/2.

Tensor equations, like equation (2.2), are valid in any coordinate system.
However, in some parts of our calculation, it will be easier to use a particular
basis. All vectors and tensors can be written in the Minkowski, light-cone
or Milne basis. For example, we can write either
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Aµ
Mink(x) ≡

(
A0(x), Az(x), A⃗(x)

)
,

Aµ
lc(x) ≡

(
A+(x), A−(x), A⃗(x)

)
,

Aµ
Milne(x) ≡

(
Aτ (x), Aη(x), A⃗(x)

)
. (2.1)

Transformations from one basis to another are performed using the appropri-
ate general coordinate transformation (see equation (A.10)). The transverse
components of any vector or tensor are the same in all three bases, and we
will use indices (i, j, k, l . . . ) to denote transverse components. Individual
components are sometimes written with letter indices, using an obvious no-
tation (for example, Ai=1 ≡ Ax and Ai=2 ≡ Ay). In most equations, it is
obvious which basis is being used (for example, in equation (2.7), the su-
perscripts on the left-hand side make it clear that the potential is written
in the light-cone basis). In any situation, where the basis is not clear, we
include a subscript stating explicitly which basis is used.

2.1. Equations of motion

In the formulation of the CGC effective theory that we use, the dynamics
of the small-x gluons is determined from the classical YM equation

[∇µ, F
µν ] = Jν , (2.2)

where ∇µ is the covariant derivative. In Minkowski and light-cone coor-
dinates ∇µ = Dµ ≡ ∂µ − igAµ but in Milne coordinates, the covariant
derivative also includes Christoffel symbols. The field-strength tensor is

Fµν =
i

g
[∇µ,∇ν ] . (2.3)

Both Jµ and Aµ are SU(Nc) valued functions that can be written as, for
example, Aµ = Aµ

ata.
The two ions moving towards each other along the z-axis contain large-x

valence partons that provide the source on the right-hand side of equa-
tion (2.2)

Jµ(x) = Jµ
1 (x) + Jµ

2 (x) ,

Jµ
1 (x) = δµ+gρ1(x

−, x⃗⊥) ,

Jµ
2 (x) = δµ−gρ2(x

+, x⃗⊥) , (2.4)

where the indices 1 and 2 indicate the ions moving to the right (the positive
z direction) and the left (the negative z direction), respectively, and ρ1 and
ρ2 are the densities of the color charges. The valence partons are assumed to
remain ultra-relativistic throughout the collision, and the currents are static
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(independent of the light-cone time). Physically this means that the lifetime
of the valence partons is much greater than that of the small-x degrees of
freedom. We refer to the path of ion 1 as the positive light cone, and ion 2
moves along the negative light cone. Because of Lorentz contraction, both
ions have a very small but finite region of support across the light cone over
−w/2 ≤ x∓ ≤ w/2. The limit w → 0 will be taken at the end of the
calculation (see Appendix B of Ref. [18] for details), but in intermediate
steps of the calculation, it is necessary to keep w non-zero.

Our goal is to find the gauge field in the forward light cone, which corre-
sponds to the post-collision part of spacetime. It is natural to describe this
region using Milne coordinates. We will work in the axial gauge Aτ = 0,
which is also called the Fock–Schwinger gauge. The gauge potential in the
forward light cone has the form

Aµ
Milne = θ(τ) (0, α(τ, x⃗⊥), α⃗⊥(τ, x⃗⊥)) , (2.5)

where the functions α(τ, x⃗⊥) and α⃗⊥(τ, x⃗⊥) are independent of rapidity, as is
appropriate for a boost invariant system. The YM equation and the energy-
momentum tensor are simplified in these coordinates. As will be explained
in detail below, our method is to expand the gauge potential in τ , solve the
YM equation order-by-order in the expansion, and obtain expressions that
depend on the initial potentials α(0, x⃗⊥) and α⃗⊥(0, x⃗⊥).

The initial potentials must be connected to the source terms that rep-
resent the currents of the two colliding ions. For this purpose, one writes
the gauge potential in light-cone coordinates, where the regions of space-
time that correspond to the pre- and post-collision fields are separated. In
light-cone coordinates, the gauge condition Aτ = 0 is

x+A− + x−A+ = 0 , (2.6)

and the gluon potential is given by the ansatz [24, 25]

A+(x) = Θ(x+)Θ(x−)x+α(τ, x⃗⊥) ,

A−(x) = −Θ(x+)Θ(x−)x−α(τ, x⃗⊥) ,

Ai(x) = Θ(x+)Θ(x−)αi
⊥(τ, x⃗⊥)

+Θ(−x+)Θ(x−)βi
1(x

−, x⃗⊥) + Θ(x+)Θ(−x−)βi
2(x

+, x⃗⊥) , (2.7)

which satisfies Eq. (2.6) in all regions of spacetime. The step functions sepa-
rate the glasma potentials in the post-collision part of spacetime, determined
by the functions α and α⃗⊥, from the pre-collision potential of each ion, de-
noted β⃗1 and β⃗2. In the post-collision part of spacetime, the four-component
vector potential is represented in terms of three independent scalar functions,
and in each of the pre-collision regions there are two independent functions.
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2.2. Outline of the computational method

The first step is to calculate the gauge potential in the post-collision
region of spacetime. These potentials can then be used to obtain electric
and magnetic fields which are directly related to observables. There are five
main steps in the procedure:

A. Using Milne coordinates with the ansatz (2.7), we expand the func-
tions α(τ, x⃗⊥) and α⃗⊥(τ, x⃗⊥) in τ , and solve the YM equation for the
coefficients of these expansions.

B. The solutions obtained in step A are rewritten in terms of the initial
potentials α(0, x⃗⊥) and α⃗⊥(0, x⃗⊥) and their derivatives.

C. Applying the boundary conditions that connect the potentials α(0, x⃗⊥)
and α⃗⊥(0, x⃗⊥) to the potentials β⃗1(x−, x⃗⊥) and β⃗2(x

+, x⃗⊥) in the pre-
collision region, the potentials obtained in step B are rewritten in terms
of pre-collision potentials for each ion and their derivatives.

D. The pre-collision potentials βi
1(x

−, x⃗⊥) and βi
2(x

+, x⃗⊥), which are gen-
erated by the color charge distributions of the individual incoming
nuclei ρ1(x−, x⃗⊥) and ρ2(x

+, x⃗⊥), are expressed in terms of these dis-
tributions by solving the YM equation in the pre-collision region.

E. The physical observables we consider are non-linear functions of deriva-
tives of the gauge potentials obtained in steps A, B, C, and D. To
obtain physical, color neutral results, we use an averaging procedure
that is explained below.

The procedure to average over color in step E is complicated. An observ-
able of interest is expressed through products of color charge distributions
and their derivatives. An important assumption of the CGC approach is that
the distribution of color charges is Gaussian within each nucleus. This means
that the average of a product of color charge distributions can be written as
a sum of terms that combine the averages of all possible pairs in full anal-
ogy to Wick’s theorem. The average of a product of pre-collision potentials,
which depend on the color charges that created them in a non-trivial way,
is much more difficult to calculate, and the calculation becomes more and
more complicated as the number of potentials increases [26–30]. We use the
Glasma Graph Approximation [29] which has been used in other near-field
expanded calculations and is equivalent to the application of Wick’s theo-
rem to light-cone potentials directly. For the simple case of homogeneous
ions that are infinite in the transverse plane, we have found a method [18],
discussed in Section 2.7, which shows that the effect of this approximation
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is small. We stress however that the range of validity of the Glasma Graph
Approximation has not been carefully studied and this is an open and im-
portant issue. In the context of our calculation, the use of the Glasma Graph
Approximation means that an observable can be written in terms of the two-
point correlator of the pre-collision potentials. This correlator was originally
calculated in Ref. [5] and generalized to include effects of varying nuclear
density in Refs. [15, 18].

2.3. Proper time expansion

In this section, we solve the sourceless YM equation in the forward light
cone in Milne coordinates. The sourceless YM equation (2.2) can be writ-
ten as

gσµ [∇σ[∇µ,∇ν ]] = 0 , (2.8)

where the covariant derivative in this equation includes both the gauge field
contribution, and the Christoffel symbols that are necessary in Milne coor-
dinates (see Eqs. (A.13), (A.14)). The ansatz for the gauge potential (2.7)
contains only three functions α and α⃗⊥ in the forward light cone (due to
the gauge condition) and therefore the four components of the YM equation
are not all independent. We use the three equations obtained from setting
ν ∈ (1, 2, 3) and find analytic solutions for the three ansatz functions by ex-
panding in the proper time and solving for the coefficients of the expansion.
We write

α(τ, x⃗⊥) =
∞∑
n=0

τnα(n)(x⃗⊥) = α(0)(x⃗⊥)+τα(1)(x⃗⊥)+τ2α(2)(x⃗⊥)+. . . , (2.9)

and similarly

α⃗⊥(τ, x⃗⊥) =

∞∑
n=0

τnα⃗
(n)
⊥ (x⃗⊥) . (2.10)

It can be shown using a recursive procedure that all of the coefficients multi-
plying odd powers of τ are zero [15]. The coefficients α(2)(x⃗⊥) and α⃗

(2)
⊥ (x⃗⊥)

are found in terms of α(0)(x⃗⊥) and α⃗(0)(x⃗⊥), the coefficients α(4)(x⃗⊥) and
α⃗
(4)
⊥ (x⃗⊥) are then found in terms of α(2)(x⃗⊥), α⃗

(2)
⊥ (x⃗⊥), α(0)(x⃗⊥), and

α⃗
(0)
⊥ (x⃗⊥), etc. The process is tedious but perfectly straightforward and can

be carried out algorithmically to any order. As a consistency check, we verify
that the solution obtained satisfies the YM equation with ν = 0.

The results can be written in compact form in terms of the fields at
the lowest order in the τ expansion. The only non-zero components of the
electric and magnetic fields at τ = 0 are
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E ≡ Ez(0, x⃗⊥) = −2α(0, x⃗⊥) , (2.11)

B ≡ Bz(0, x⃗⊥) = ∂yαx
⊥(0, x⃗⊥)− ∂xαy

⊥(0, x⃗⊥)

−ig
[
αy
⊥(0, x⃗⊥), α

x
⊥(0, x⃗⊥)

]
. (2.12)

To the fourth order, the even coefficients in the series in Eqs. (2.9) and (2.10)
are (omitting all arguments)

α(2) =
1

8

[
Dj ,

[
Dj , α(0)

]]
,

α(4) =
ig

48
ϵij
[[
Di, α(0)

]
,
[
Dj , B

]]
+

1

192

[
Dk,

[
Dk,

[
Dj ,

[
Dj , α(0)

]]]]
,

α
i(2)
⊥ =

1

4
ϵij
[
Dj , B

]
,

α
i(4)
⊥ =

ig

64

[[
Di, B

]
, B
]
+

1

64
ϵij
[
Dj ,

[
Dk,

[
Dk, B

]]]
+

ig

16

[
α(0),

[
Di

,α
(0)
]]

,

(2.13)

where we define
Di ≡ ∂i − ig αi

⊥(0, x⃗⊥) , (2.14)

and the notation ϵij represents a matrix with values ϵ11 = ϵ22 = 0 and
ϵ12 = −ϵ21 = 1.

2.4. Boundary conditions

The initial potentials α(0)(x⃗⊥) and α⃗
(0)
⊥ (x⃗⊥) are related to the pre-

collision potentials β⃗1(x
−, x⃗⊥) and β⃗2(x

+, x⃗⊥) through a set of boundary
conditions. These conditions were originally obtained by matching terms
from the pre- and post-collision regions that are singular on the light cone
[24, 25]. We work with sources with small but finite longitudinal width, and
the limit that this width goes to zero cannot be taken until after the bound-
ary conditions have been used. The boundary conditions should therefore
be obtained by integrating the YM equation across the light cone. This
procedure is presented in Appendix C of our work [18] and the boundary
conditions are

αi
⊥(0, x⃗⊥) = α

i(0)
⊥ (x⃗⊥) = lim

w→0

(
βi
1(x

−, x⃗⊥) + βi
2(x

+, x⃗⊥)
)
, (2.15)

α(0, x⃗⊥) = α(0)(x⃗⊥) = − ig

2
lim
w→0

[
βi
1(x

−, x⃗⊥), β
i
2(x

+, x⃗⊥)
]
, (2.16)

where the notation limw→0 indicates that the width of the sources across
the light cone is taken to zero. As explained in Section 2.6, the pre-collision
potentials depend only on transverse coordinates in this limit.
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2.5. Energy-momentum tensor

Various observables can be obtained from the energy-momentum tensor.
We choose the following definition of the tensor:

Tµν = 2Tr

[
FµρF ν

ρ +
1

4
gµνF ρσFρσ

]
= Fµλ

a F ν
λ a +

1

4
gµνF ρσ

a Fρσ a , (2.17)

where Fµν is the field-strength tensor (2.3). The definition is obtained by
adding a total divergence to the canonical result to produce an expression
that is gauge invariant, conserved, symmetric, and traceless. We note that
the two field-strength tensors in equation (2.17) are actually calculated at
different points, denoted x = (x+, x−, x⃗⊥) and y = (y+, y−, y⃗⊥), and we take
(x− y) → 0 at the end of the calculation.

Using equations (2.5), (2.9), (2.10), and the iterative solutions found in
Section 2.3, we obtain a lengthy expression for the field-strength tensor in
Milne coordinates that depends only on the initial potentials α(0)(x⃗⊥) and
α⃗
(0)
⊥ (x⃗⊥) and the expansion parameter τ . We further express the tensor in

terms of only pre-collision potentials using the boundary conditions (2.15)
and (2.16).

We have checked that the resulting energy-momentum tensor is symmet-
ric and has zero divergence

∇µT
µν = ∂µT

µν − Γµ
µρT

ρν − Γ ν
µρT

µρ = 0 . (2.18)

The energy-momentum tensor in Minkowski space can be found as Tµν
Mink =

Mµ
ρMν

σT
ρσ
Milne with the transformation matrix given by Eq. (A.10).

2.6. Correlation functions of pre-collision potentials

All components of the energy-momentum tensor have the form of sums
of products of pre-collision potentials. A generic term has the form

βi
1a(x

−, x⃗⊥)β
k
1b(x

−, x⃗⊥)β
k
2c(x

+, x⃗⊥) . . . β
m
1d(y

−, y⃗⊥)β
l
2e(y

+, y⃗⊥) . (2.19)

The pre-collision potentials can be expressed in terms of the charge distri-
butions of the ion sources by solving the YM equation in the pre-collision
region. These color charge distributions are not known, and an important
input to the CGC approach is the use of an averaging procedure based on
the assumption of a Gaussian distribution of color charges within each nu-
cleus. A product of color charges is replaced by its average over this Gaus-
sian distribution (which will be denoted with angle brackets). We make
the assumption that sources from different ions are uncorrelated or, equiv-
alently, that correlation functions of products of sources from different ions
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can be set to zero. This means that we need to consider only averages of
the form ⟨ρ1ρ1 . . . ρ1⟩ and ⟨ρ2ρ2 . . . ρ2⟩, where all sources are from the same
ion. This approximation is justified because the pre-collision distributions
are independent of each other due to causality, and they remain uncorre-
lated post-collision because the CGC approach we are using assumes that
the color sources are static. This assumption is a standard component of
most CGC calculations, but it necessarily means that the approach does not
capture the QCD dynamics of a heavy-ion collision completely.

The correlation function of the color charge density of the first ion
ρ1(x

−, x⃗⊥) is assumed to have the form

⟨ρ1(x−, x⃗⊥) ρ1(y−, y⃗⊥)⟩ ≡ g2λ1(x
−, x⃗⊥) δ(x

− − y−) δ(2)(x⃗⊥ − y⃗⊥) , (2.20)

where λ1(x
−, x⃗⊥) = h(x−)µ1(x⃗⊥) with h(x−) a sharply peaked non-negative

function normalized to one with width w around x− = 0 and µ1(x⃗⊥) is a
surface color charge density. The integration of λ1(x

−, x⃗⊥) over x− obviously
gives µ1(x⃗⊥). We make the analogous definitions for the second ion, and the
width w is taken to zero at the end of the calculation. Since the average
over a Gaussian distribution of color densities which are independent random
variables can be rewritten as a sum over the averages of all possible pairs,
the average over any product of color sources can be written in terms of the
fundamental correlator (2.20).

As discussed in Section 2.2, we use the approximation that Wick’s the-
orem can be applied to light-cone potentials directly, which is called the
Glasma Graph Approximation [31]. Correlations of any even number of po-
tentials from the same ion are written as products of correlators of pairs
of potentials. The only correlator that must be calculated is the two-point
correlator of pre-collision potentials from the same ion. We define

δabB
ij
1 (x⃗⊥, y⃗⊥) ≡ lim

w→0
⟨βi

1 a(x
−, x⃗⊥)β

j
1 b(y

−, y⃗⊥)⟩ ,

δabB
ij
2 (x⃗⊥, y⃗⊥) ≡ lim

w→0
⟨βi

2 a(x
+, x⃗⊥)]β

j
2 b(y

+, y⃗⊥)⟩ . (2.21)

Our calculation of the functions Bij
n (x⃗⊥, y⃗⊥) with n ∈ {1, 2} can be found

in Appendix D of Ref. [18], and the result is

Bij
n (x⃗⊥, y⃗⊥) =

1

g2Nc∆γ̃n(x⃗⊥, y⃗⊥)

(
exp

[
g4Nc∆γ̃n(x⃗⊥, y⃗⊥)

]
− 1
)

×∂i
x∂

j
yγ̃n(x⃗⊥, y⃗⊥) , (2.22)

with

∆γ̃n(x⃗⊥, y⃗⊥) ≡ γ̃n(x⃗⊥, y⃗⊥)−
1

2
γ̃n(x⃗⊥, x⃗⊥)−

1

2
γ̃n(y⃗⊥, y⃗⊥) (2.23)
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and

γ̃n(x⃗⊥, y⃗⊥) ≡
∫

d2z⊥µn(z⃗⊥)G(x⃗⊥ − z⃗⊥)G(y⃗⊥ − z⃗⊥) , (2.24)

where G(x⃗⊥) is Green’s function of the two-dimensional Poisson equation
and equals

G(x⃗⊥) =
1

2π
K0 (m|x⃗⊥|) . (2.25)

The function K0 is a modified Bessel function of the second kind, and m
is an infrared regulator whose definition will be discussed in Section 2.8.1.
We note that the correlators Bij

1 (x⃗⊥, y⃗⊥) and Bij
2 (x⃗⊥, y⃗⊥) will be different

only if the two ions, and their corresponding surface color charge densities
µ1(z⃗⊥) and µ2(z⃗⊥), are different.

If the surface density of color charges is uniform and µ1(x⃗⊥)=µ2(x⃗⊥)= µ̄,
the functions γ̃1(x⃗⊥, y⃗⊥) and γ̃2(x⃗⊥, y⃗⊥) are equal to each other and depend
only on the magnitude of the relative coordinate r = |x⃗⊥ − y⃗⊥|, and will
both be denoted γ̄(r). In this case, the correlator (2.22) becomes

Bij (x⃗⊥, y⃗⊥) = g2

(
eg

4Nc(γ̄(r)−γ̄(0)) − 1

g4Nc (γ̄(r)− γ̄(0))

)
∂i
x ∂

j
y γ̄(r) (2.26)

with

γ̄(r) =
µ̄

4πm
rK1(mr) . (2.27)

Substituting (2.27) into (2.26), one finds that the correlator Bij diverges
logarithmically when r → 0 and therefore has to be regularized. This will
be discussed in Section 2.8.2.

All higher-order correlators are expressed through the correlators (2.21)
and (2.22). For example, the average of four potentials, two from each ion, is

lim
w→0

〈
βi
1 a(x

−, x⃗⊥)β
j
1 b

(
y−, y⃗⊥

)
βl
2 c(x

+, x⃗⊥)β
m
2 d

(
y+, y⃗⊥

)〉
= δabδcdB

ij (x⃗⊥, y⃗⊥) B
lm (x⃗⊥, y⃗⊥) . (2.28)

When one of the potentials is differentiated with respect to a transverse
coordinate, we have, for example,

lim
w→0

〈
∂k
xβ

i
1 a(x

−, x⃗⊥)β
j
1 b

(
y−, y⃗⊥

)〉
= δab∂

k
xB

ij (x⃗⊥, y⃗⊥) . (2.29)
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2.7. Accuracy of the Glasma Graph Approximation

We apply the Glasma Graph Approximation which allows us to use
Wick’s theorem to calculate products of light-cone gauge potentials. Al-
though the approximation is consistently used throughout, we can still ob-
tain a quantitative measure of its validity in our calculation of the energy-
momentum tensor.

The initial longitudinal magnetic field in equation (2.12) is rewritten
using the initial condition (2.16) as

B = Bz(0, x⃗⊥) = F 21
1 (x⃗⊥) + F 21

2 (x⃗⊥) + igϵij
[
βi
1(x⃗⊥), β

j
2(x⃗⊥)

]
. (2.30)

If we use the fact that the pre-collision potentials are pure gauge (pg), F ij
1 =

F ij
2 = 0, Eq. (2.30) can be written as

Bpg = igϵij
[
βi
1(x⃗⊥), β

j
2(x⃗⊥)

]
. (2.31)

We expect that the averaging procedure gives ⟨B⟩ = ⟨Bpg⟩ or ⟨F 21
1 ⟩ =

⟨F 21
2 ⟩ = ⟨F 12

1 ⟩ = ⟨F 12
2 ⟩ = 0. We consider the field strength from the first

ion (suppressing the subscript 1). Expanding out all terms, we have

F 12(x⃗⊥) = ∂1
xβ

2(x⃗⊥)− ∂2
xβ

1(x⃗⊥)− igβ1(x⃗⊥)β
2(x⃗⊥) + igβ2(x⃗⊥)β

1(x⃗⊥) .
(2.32)

The expectation value of this expression is obviously zero because the aver-
aging procedure involves a trace over color indices. In fact, it is zero even
before the color trace is taken since the first two terms have only one po-
tential (all terms with an odd number of potentials are set to zero), and
the third and fourth terms give zero using the expression for the two-point
correlator that is derived below (see Eq. (2.38)).

Next, we consider the expectation value

lim
r→0

〈
F 12(x⃗⊥)∂

2
yβ

1(y⃗⊥)
〉
. (2.33)

This should also vanish since F 12 = 0. The terms with three potentials are
set to zero, and the terms with two potentials give

lim
r→0

〈
F 12(x⃗⊥)∂

2
yβ

1(y⃗⊥)
〉

=
1

2

(
N2

c − 1
)
lim
r→0

[
∂1
x∂

2
yB

21(x⃗⊥, y⃗⊥)− ∂2
x∂

2
yB

11(x⃗⊥, y⃗⊥)
]
. (2.34)

Equation (2.42), which is derived in Section 2.8.2, shows that the right-hand
side of (2.34) is not zero. This contradiction is related to the Glasma Graph
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Approximation, which sets all correlators with odd numbers of potentials to
zero. Therefore, we can test the approximation by comparing the energy-
momentum tensor obtained with the two different forms of the lowest order
magnetic field in Eqs. (2.30) and (2.31).

2.8. Regularization

To calculate the observables we are interested in, we need correlators of
potentials at the same point, which should be obtained from the correlator
(2.22) taking the limit r⃗ = x⃗⊥− y⃗⊥ → 0. This limit produces a divergence,
and an ultraviolet regulator is needed to control it. We note that this diver-
gence is expected since the CGC model we are using is classical and breaks
down at small distances. An infrared regulator is also needed to properly
define Green’s functions (2.25) from which the correlators of pre-collision
potentials are constructed. In this section, we discuss the parameters that
are needed to control these ultraviolet and infrared divergences.

2.8.1. Infrared regulator

In Eq. (2.25) there is introduced an infrared regulator denoted m. To
obtain more insight into how this regulator should be chosen, we expand the
Green’s function in (2.25) around m = 0 which gives

G(r⃗ ) ≈ 1

2π
ln

(
L

r

)
with L =

2 e−γE

m
≈ 1.12

m
, (2.35)

where γE ≈ 0.577 is Euler’s constant. Since the valence parton sources come
from individual nucleons, confinement tells us that their effects should die
off at transverse length scales larger than 1/ΛQCD, and the Green’s function
should therefore be defined with boundary conditions so that it vanishes at
r ≳ 1/ΛQCD. From Eq. (2.35), we see that we should choose m ∼ ΛQCD.

2.8.2. Ultraviolet regulator

Substituting (2.27) into (2.26), one finds that the correlator Bij diverges
logarithmically when r → 0. One approach to regulate this divergence, and
the divergences that appear in derivatives of the two-point correlator, is to
expand in r and regulate any factors involving inverse powers of r, or loga-
rithms of r, by making the replacement r → 1/Qs. A different method [14] is
more suitable for a calculation of local quantities like the energy-momentum
tensor, where we want to take the relative coordinate r strictly to zero. We
rewrite the function γ̄(r) as a momentum integral

γ̄(r) =
µ̄

4πm
rK1(mr) = µ̄

∫
d2k

(2π)2
eir⃗·⃗k

(k2 +m2)2
, (2.36)
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and then substituting (2.36) into (2.26), we obtain2

lim
r→0

Bij(x⃗⊥, y⃗⊥) = g2µ̄

∫
d2k

(2π)2
k̂ik̂jk

(k2 +m2)2
= δij

g2µ̄

4π

∞∫
0

dk k3

(k2 +m2)2
.

(2.37)
In the last line, we have used k̂ik̂j → δij/2 which follows from the integration
over the angular variables. We introduce a momentum cutoff that we call Λ
to regulate the logarithmically divergent integral in Eq. (2.37), which gives

lim
r→0

Bij(x⃗⊥, y⃗⊥) = δijg2
µ̄

8π

(
LN− Λ2

Λ2 +m2

)
, (2.38)

where we have defined

LN ≡ ln

(
Λ2

m2
+ 1

)
. (2.39)

Derivatives of the correlator Bij(x⃗⊥, y⃗⊥) can be calculated in the same
way. After integrating over the angular variables, products of odd numbers
of unit vectors k̂ give zero and products of four- and six-unit vectors are
replaced with sums of products of delta functions using

k̂ik̂j k̂kk̂l → 1

8
(δilδjk + δikδjl + δijδkl) , (2.40)

k̂ik̂j k̂kk̂lk̂mk̂n → 1

48
(δinδjmδkl + δimδjnδkl + δijδklδmn + δinδjlδkm

+δilδjnδkm + δimδjlδkn + δilδjmδkn + δinδjkδlm

+δikδjnδlm + δijδknδlm + δimδjkδln + δikδjmδln

+δijδkmδln + δilδjkδmn + δikδjlδmn) . (2.41)

Formulas similar to (2.40) and (2.41) can be obtained for any even number
of unit vectors.

When two derivatives act on the two-point correlator, we obtain

lim
r→0

∂l
n1
∂m
n2
Bij(x⃗⊥, y⃗⊥) = (−1)n1+n2+1 g

2µ̄

16π

×
[(

δijδlm + δilδjm + δimδjl
)(Λ4 + 2Λ2m2

2 (Λ2 +m2)
−m2LN

)
+δlmδij

3g4µ̄

8π

(
LN2 +

Λ4

(Λ2 +m2)2
− 2LNΛ2

Λ2 +m2

)]
, (2.42)

2 In Ref. [18] there was a misprint in the equation corresponding to (2.37) (see Eq. (32)),
where the expression in the middle has the wrong power of k.
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where we use the notation that the index ni is 1 if the transverse derivatives
are with respect to x⃗⊥ and 2 if the transverse derivatives are with respect
to y⃗⊥. We note that the leading order contributions to equation (2.42)
should agree with Eq. (27) in Ref. [14], but we have a different sign for the
last term in that equation.

Although one might expect that the alternative regularization scheme
described above equation (2.36) would give very similar results, this is not
always true. For some correlators, the only difference is a redefinition of
the mass scale which appears in the argument of a logarithmic factor, but
in some cases, the two regularization methods give parametrically different
results. We consider, as an example, the biggest contribution to (2.42) with
n1 = 1 and n2 = 2 which is

∂l
x∂

m
y Bij(x⃗⊥, y⃗⊥)

∣∣
lo
=

g2µ̄Λ2

32π

(
δijδlm + δilδjm + δimδjl

)
. (2.43)

If we start from equation (2.26), take the derivatives, expand in r, and
regulate divergences using r → 1/Qs, the leading order contribution is

∂l
x∂

m
y Bij(x⃗⊥, y⃗⊥)

∣∣
alternate

=
g2µ̄m2LG

16π

(
δijδlm + δilδjm + δimδjl

)
, (2.44)

where we have introduced the definitions

LG ≡ ln

[(
m̂

Qs

)2
]

and m̂ ≡ m

2
eγE+

1
2 . (2.45)

Comparing equations (2.43) and (2.44), we see that when we write the corre-
lator as a momentum integral with an ultraviolet cutoff, the regulated result
is of order Λ2, but if we expand in r and make the replacement r → 1/Qs,
the regulated expression is of order m2. The expansion method would there-
fore replace the ultraviolet regulator with the infrared one. In Ref. [15], the
energy-momentum tensor is calculated using both of these regularization
methods, depending on which correlator is being calculated. In our calcula-
tion of the energy-momentum tensor, we consistently regularize by writing
each correlator as a momentum integral, differentiating as needed, taking the
limit r → 0 and calculating the regulated momentum integral. We note also
that we treat both the one-point correlator Bij(x⃗⊥, x⃗⊥) and the two-point
correlator Bij(x⃗⊥, y⃗⊥) in the same way.

In our calculation of transport coefficients, the regularization is done in
a completely different way because the physics of the calculation is different.
In this case, the variable r is an integration variable that goes to zero at
the lower limit of the integration. The regularization is done using a step
function in coordinate space and is discussed in Section 4.3.4.
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2.8.3. The MV scale

The color charge density provides a dimensionful scale
√
µ̄ which is usu-

ally called the McLerran–Venugopalan (MV) scale and is defined in our
notation as g2

√
µ̄. This scale is related to the saturation scale Qs, although

the exact relationship between them cannot be determined within the CGC
approach, as repeatedly discussed, see, for example, [32, 36]. Expanding the
function ∆γ̃(x⃗⊥, y⃗⊥) in Eq. (2.23) in mr ≪ 1 gives

∆γ̃(x⃗⊥, y⃗⊥)
∣∣
MV

=
µ̄r2

16π

[
2 ln

(mr

2

)
+ 2γE − 1 +O

(
(mr)2

)]
(2.46)

which is rewritten using (2.45) in the form

∆γ̃(x⃗⊥, y⃗⊥)
∣∣
MV

=
µ̄r2

16π

(
LG− 2 +O

(
(m̂ r)2

))
. (2.47)

Substituting the expression (2.47) into the correlator (2.22), we obtain

Bij(x⃗⊥, y⃗⊥)
∣∣
MV

≈ 2

g2Ncr2
δij (1− δϵ) , (2.48)

where we have defined two dimensionless parameters

δ ≡ m̂r ≪ 1 and ϵ ≡ g4Nc

8π
µ̄r2 . (2.49)

The result in (2.48) can be used to argue that the MV scale is propor-
tional to the saturation scale [5]. For ϵ ≪ 1, we have 1 − δϵ ≈ −ϵ ln δ and
the correlator (2.48) becomes

Bij(x⃗⊥, y⃗⊥)
∣∣
MV

≈ −g2µ̄

8π
δij ln

(
m̂2r2

)
. (2.50)

For ϵ > 1, we have 1− δϵ ≈ 1 and (2.48) takes the form

Bij(x⃗⊥, y⃗⊥)
∣∣
MV

≈ 2δij

g2Nc

1

r2
. (2.51)

The condition ϵ < 1 corresponds to small transverse distances or momentum
scales k⊥ ≳ ᾱ

√
µ̄ with ᾱ = g2

√
Nc/(8π). The opposite case, ϵ > 1, means

transverse distances that are large (but still much smaller than 1/ΛQCD),
or momentum scales that satisfy ᾱ

√
µ̄ > k⊥ > ΛQCD. From the Fourier

transforms of the expressions (2.50) and (2.51), we see that at small trans-
verse distances, or large momentum scales, the correlation function falls
like 1/k2⊥ (perturbative behavior) and at large transverse distances or small
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momentum scales, the correlation function rises like ∼ ln(k⊥). The num-
ber of gluons in a range dk⊥ about some k⊥ is related to the trace of the
gluon propagator in equation (2.48), multiplied by the phase space factor k⊥.
The peak occurs approximately at the momentum scale that corresponds to
ϵ = 1, which divides the growing and falling regions of the distribution func-
tion. Therefore, the typical transverse momenta of gluons, or the saturation
scale, satisfies

ϵ
∣∣
r∼1/Qs

= 2π α2
s Nc r

2µ̄
∣∣
r∼1/Qs

= 1 (2.52)

which gives Q2
s ∼ g4µ̄. As mentioned above, the proportionality factor

cannot be determined within the CGC approach. We define

Q2
s = g4µ̄ . (2.53)

Due to the ambiguity associated with the value of the MV scale, our nu-
merical results for quantities such as the energy density and pressure should
be regarded as order of magnitude estimates. Quantities that depend on
ratios of different elements of the energy-momentum tensor, like Fourier co-
efficients of the azimuthal flow, will have much weaker dependence on the
MV scale.

2.9. Correlators of pre-collision potentials of finite nuclei

Until now, we have considered only the simple case of nuclei that are
infinite and uniform in the transverse plane. In this section, we consider
more physically realistic collisions where the nuclei are finite and the nuclear
area densities are not constant.

The correlator of pre-collision potentials given by Eqs. (2.21)–(2.25) is
not only applicable to nuclei which are transversally uniform, which corre-
sponds to taking µ(x⃗⊥) = µ̄, but can also be used for non-uniform charge
densities. We now consider the situation where the surface density of color
charges for each nucleus is assumed to be the two-dimensional projection of
a Woods–Saxon distribution

µ(x⃗⊥) =

(
A

207

)1/3 µ̄

2a ln
(
1 + eRA/a

) ∞∫
−∞

dz

1+exp
[(√

(x⃗⊥)2+z2 −RA

)/
a
] .

(2.54)
The parameters RA and a give the radius and skin thickness of a nucleus
of mass number A, and their numerical values are discussed in Section 3.3.
The integral in (2.54) is normalized so that for a lead nucleus µ(⃗0 ) = µ̄.
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The correlator of pre-collision potentials can be obtained from equa-
tions (2.21)–(2.25) by substituting the distribution of (2.54) into Eq. (2.24)
and performing a gradient expansion, following the method developed in
Ref. [15]3. The coordinates x⃗⊥ and y⃗⊥ are rewritten in terms of relative and
average coordinates, which are defined as x⃗⊥ − y⃗⊥ and (x⃗⊥ + y⃗⊥)/2, respec-
tively. To consider collisions with non-zero impact parameter, we expand
the distribution µ1(z⃗⊥) around R⃗ − b⃗/2, and µ2(z⃗⊥) around R⃗ + b⃗/2. We
will keep terms up to the second order in gradients of the distribution. The
parameter that we assume to be small is

δ =

∣∣∣∇iµ
(
R⃗± b⃗

2

)∣∣∣
mµ

(
R⃗± b⃗

2

) , (2.55)

where the gradient operator indicates differentiation with respect to the
argument of the function. The region of validity of this expansion is discussed
in Section 3.3.

In the rest of this section, we drop the subscript that indicates which ion
is being considered and set b⃗ = 0. Performing the gradient expansion and
keeping terms up to second order in gradients of µ, equation (2.24) becomes

γ̃(x⃗⊥, y⃗⊥) =
µ
(
R⃗
)
r

4πm
K1(mr)

×1

2
∇i∇jµ

(
R⃗
)(

δij
r2

24πm2
K2(mr) +

rirj

r2
r3

48πm
K1(mr)

)
. (2.56)

We can rewrite Eq. (2.56) in the form

γ̃(x⃗⊥, y⃗⊥) = µ
(
R⃗
)∫ d2k

(2π)2
eir⃗·⃗k

(k2 +m2)2
+

m2

2
∇2µ

(
R⃗
)∫ d2k

(2π)2
eir⃗·⃗k

(k2 +m2)4
,

(2.57)
where we have made the replacement r̂ir̂j → δij/2 because in the limit of
r⃗ → 0, we know γ̃ must be independent of the direction of the vector r̂.
We note that we are able to make this replacement before performing any
derivatives with respect to x⃗⊥ and y⃗⊥, since limr→0 ∂

i
x . . . ∂

j
y . . . r̂kr̂l = 0,

where the dots indicate any number of derivatives.
The correlator Bij(x⃗⊥, y⃗⊥) and its derivatives have ultraviolet diver-

gences that must be regulated. We use a modified version of the method
3 We remind the reader that for a realistic nucleus, which is made up of individual

nucleons, the transverse charge distribution is not a very smooth function. It is
possible that the transverse charge distribution of a real nucleus could be sufficiently
irregular that a Woods–Saxon distribution is not a good representation.
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proposed in Ref. [14], which is discussed in Section 2.8.2 in the context of
uniform nuclei. To illustrate it, we consider, as an example, the calculation of

∂i
x∂

j
yγ̃(x⃗⊥, y⃗⊥) = µ

(
R⃗
) ∫ d2k

(2π)2
kikjeir⃗·⃗k

(k2 +m2)2

+
m2

2
∇2µ

(
R⃗
) ∫ d2k

(2π)2
kikjeir⃗·⃗k

(k2 +m2)4
, (2.58)

which appears in the expression for Bij in Eq. (2.22). The integration over
angular variables gives kikj → δijk2/2. The second term in (2.58) is finite,
but the first term is logarithmically divergent and we regulate it using an
ultraviolet momentum cutoff Λ. This cutoff will be set to the saturation
scale Qs.

Now, we consider the contribution from the factor in round brackets in
Eq. (2.22). Expanding this factor, we have

eg
4Nc ∆γ̃n(x⃗⊥,y⃗⊥) − 1

g4Nc∆γ̃n(x⃗⊥, y⃗⊥)
= 1 +

1

2
g4Nc∆γ̃(x⃗⊥, y⃗⊥) +

1

6

(
g4Nc∆γ̃(x⃗⊥, y⃗⊥)

)2
+ . . .

(2.59)
When we calculate derivatives of the correlator Bij(x⃗⊥, y⃗⊥), the derivatives
operate on all terms in the expansion in Eq. (2.59). At the sixth order
in the τ expansion, the energy-momentum tensor includes terms with six
derivatives acting on the correlator in Eq. (2.22). Naively it would seem
that we need to expand the exponent in Eq. (2.59) to the seventh order,
since each of the six derivative operators will have a piece proportional to
∂/∂ri which could act separately on each of the six factors in the term
(∆γ̃(x⃗⊥, y⃗⊥))

6. For example, if we differentiate six times with respect to r1,
we obtain an expression of the form

lim
r⃗→0

(
∂

∂r1

)6

(∆γ̃(x⃗⊥, y⃗⊥))
6 = lim

r⃗→0

(
∂

∂r1
γ̃(x⃗⊥, y⃗⊥)

)6

+ . . . , (2.60)

where the dots represent additional terms that give zero when r⃗ is taken to
zero. However, it is easy to see from Eq. (2.57) that if we differentiate γ̃ an
odd number of times with respect to r1 or r2, the integration over momentum
variables gives zero. This means that terms with more than three factors of
∆γ̃, which are operated on with a maximum of six derivatives with respect
to components of r⃗, can be set to zero. Equivalently, we have to expand the
exponential only to the fourth order. All correlators and their derivatives
can be obtained using the method described above.
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3. Numerical results for the energy-momentum tensor

We remind the reader of the geometry of the collision we are considering.
The two ions approach each other along the z-axis and collide at the origin,
at time t = 0. Post collision, the first ion moves outward along the positive
z-axis, and the second ion moves along the negative z-axis. We will consider
collisions with non-zero impact parameter, which we denote b. The displace-
ment vector for the first ion is b⃗1 = (b/2, 0) and for the second ion we use
b⃗2 = (−b/2, 0). Energy and pressure are given in GeV and lengths in fm.
We use Nc = 3, m = 0.2 GeV, Qs = 2 GeV, and g = 1, unless stated other-
wise. We consider lead–lead collisions, which corresponds to mass numbers
A1 = A2 = 207, except for a few situations where we will explicitly specify
different mass numbers.

3.1. Glasma from collisions of transversally uniform nuclei

We start the presentation of our results with the simplified case of traver-
sally infinite and uniform nuclei.

In Fig. 1, we show the energy density as a function of τ at the 2nd,
4th, 6th, and 8th order in the proper time expansion. The figure shows that
the expansion converges well for τ ≲ 0.05 fm. The initial energy density
is E0 = 2080 GeV/fm3. As discussed under equation (2.53), the precise
numerical value of the MV scale cannot be determined with a CGC approach
and numerical results for quantities like the energy density should therefore
be interpreted as order of magnitude estimates only. We note, however, that
our result is not far from the estimate given in Ref. [38] for the fraction of
the collision energy that goes into particle production at the LHC.

3[GeV/fm ]

2

[fm]

Fig. 1. The energy density as a function of τ at η = 0 at different orders in the
proper time expansion.
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Next, we consider the possible equilibration of the system. At τ = 0+,
the energy-momentum tensor has the diagonal form

T initial
Mink =


E0 0 0 0
0 −E0 0 0
0 0 E0 0
0 0 0 E0

 . (3.1)

The initial longitudinal pressure is large and negative. The system is there-
fore far from equilibrium, and also far from the regime where a quasi-particle
picture would be valid. We look at the evolution of the energy density and
pressure as functions of time. We define the normalized longitudinal and
transverse pressures as

pL
E

=
T 11
Mink

T 00
Mink

and
pT
E

=
1

2

(
T 22
Mink + T 33

Mink

)
T 00
Mink

. (3.2)

If the system approaches equilibrium, the longitudinal pressure must grow
as the system evolves. The energy-momentum tensor is traceless at all times
(Tµ

µ = 0) and therefore the normalized transverse pressure must decrease as
the normalized longitudinal pressure increases.

In Fig. 2, we show the normalized pressures to order τ4 as functions of τ .
The red (dashed) and blue (solid) lines are the results obtained using, re-
spectively, equations (2.30) and (2.31), and the closeness of these results is
an indication of the validity of the Glasma Graph Approximation. One sees
that the system starts to equilibrate, but the normalized pressures move
apart again at τ ∼ 0.05 fm, which is consistent with the breakdown of the
τ expansion observed in Fig. 1.

[fm]

,T Lp p

 

Fig. 2. The normalized longitudinal and transverse pressures at order τ4 as func-
tions of τ at η = 0. The blue (dashed) lines show the result obtained using equation
(2.31) and the red (solid) lines are the results from equation (2.30). In each case,
the lower line is pL/E and the upper line is pT/E .
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In Fig. 3, we show the normalized longitudinal and transverse pressures
to order τ4, τ6, and τ8. One sees that the expansion breaks down at later
times when the order of the expansion is increased.

[fm]

,T Lp p

 

Fig. 3. The normalized longitudinal and transverse pressures as functions of τ at
η = 0 computed at the 4th, 6th, and 8th orders in the proper time expansion. The
lower lines are pL/E and the upper lines are pT/E .

The evolution of the glasma can be studied using the anisotropy mea-
sure [39]

ATL ≡ 3(pT − pL)

2pT + pL
, (3.3)

which takes the value ATL = 6 at τ = 0 (see Eq. (3.1)) and would be
zero in an equilibrated plasma. In Fig. 4, we show ATL as a function of
τ and η at order τ4 using the two different results for the magnetic field
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Fig. 4. The anisotropy measure ATL (3.3) at order τ4. The vertical axis shows η

and the horizontal axis is τ . The left panel shows the result obtained using equation
(2.31), and the right panel is the result using equation (2.30).
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in equations (2.30) and (2.31). One sees that the results obtained using
equations (2.30) and (2.31) are fairly close to each other which shows the
validity of the Glasma Graph Approximation. We note that the appearance
of the saddle structure in the right panel indicates the breakdown of the near-
field expansion. In Fig. 5, we show ATL at order τ4 and τ8. In the left panel
we see, from the appearance of the saddle, that the fourth-order calculation
breaks down at τ∼0.04 fm. The right panel shows clearly that when eighth-
order terms are included, the region for which the expansion is valid is
extended, and the system evolves significantly closer to an equilibrium state.
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Fig. 5. The anisotropy measure ATL (3.3) at order τ4 (left panel) and order τ8

(right panel). The vertical axis shows η and the horizontal axis is τ .

3.2. Validity of the classical approach

Our calculation is based on a classical description and we can estimate
the regime of validity of this description by looking at the constraint imposed
by the uncertainty principle. The classical description requires ∆E∆t ≫ 1.
Since the energy released in the collision is extremely large, as seen in Fig. 1,
the lower bound for the range of times that satisfy the constraint will be very
small, which is the idea that justifies the near-field expansion. To obtain a
quantitative approximation for this lower bound, we estimate the initial
energy as ∆E = E0S∆t, where E0 ≈ 2000 GeV/fm3 is the initial energy
density, and S ≈ 150 fm2 is the transverse area of overlap of the colliding
nuclei. From these numbers, we obtain ∆t ≫ 1/

√
E0S ∼ 8× 10−4 fm. From

Figs. 1 and 3, and from the results presented in the next section where we
consider nuclei with transverse structure, we estimate that in our calculation
the τ expansion breaks down for values τ ≳ 0.06–0.07 fm. We see therefore
that the region of validity of the near field expansion reaches far beyond
the lower bound at which we no longer trust the classical description we are
using.
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3.3. Glasma from collisions of finite nuclei

In the previous section, we presented some results for the simple case of
nuclei that are infinite and uniform in the transverse plane. In this section,
we consider more physically realistic collisions of finite nuclei. The surface
density of color charges is no longer constant but depends on the transverse
coordinates. The function µ(x⃗⊥) is chosen in the form of a projected Woods–
Saxon distribution (2.54). We use r0 = 1.25 fm and a = 0.5 fm so that the
radius of a nucleus with A = 207 is RA = r0A

1/3 = 7.4 fm.
We allow for non-homogeneous nuclear densities of colliding nuclei by

performing a gradient expansion around the coordinate that gives the posi-
tion of the center of each nucleus in the transverse plane. In Fig. 6, we show
the density µ(x⃗⊥) with x⃗⊥ = (Rx, 0), its first and second derivatives with
respect to Rx, and the quantity δ in Eq. (2.55) which must be small for the
gradient expansion to converge. The condition δ < 0.75 is satisfied in the
region on the left of the vertical line in the figure.

Fig. 6. The red (solid), green (dashed), and blue (dot-dashed) curves show the
density µ(x⃗⊥) with x⃗⊥ = (Rx, 0) and its first and second derivatives. The quantity δ

in equation (2.55) is shown by the black dots. For illustration, the figure shows a
vertical line that indicates the value of Rx for which δ = 0.75.

Figure 6 shows clearly that the derivatives of the density function are
appreciable only in a very small region at the edges of the nucleus. This
means that if we calculate a quantity for which the dominant part of the
integrand is not close to the edges of the nuclei, the gradient expansion will
converge well, but the contributions of the derivative terms will likely be so
small that they are negligible. On the other hand, if we calculate a quantity
for which the region of the transverse plane close to the edges of the nuclei
is important, the contribution from the derivative terms can be large and
the convergence of the gradient expansion must be studied carefully.
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In the rest of this section, we study several quantities that involve an
integration over the transverse plane. These include: transverse pressure
anisotropy in Section 3.3.1, the Fourier coefficients of the flow in Section 3.3.3,
and the angular momentum of the glasma in Section 3.3.4. These calcu-
lations are potentially sensitive to the gradient expansion and results are
reliable if they are largely insensitive to the choice of the integration limits.
This condition restricts us to the consideration of fairly small impact pa-
rameters. The reason is that when the centers of the two ions are separated,
the inner edge of the first/second ion, where the density changes rapidly,
will be closer to the center of the second/first ion, where the integrand can
be large.

3.3.1. Energy density and pressures

We look at the initial-energy density E = T 00
Mink at mid-spatial-rapidity

(η = 0) for four different configurations of the colliding ions which are defined
in Table 1. The last row of the table shows the maximum initial-energy
density.

Table 1. Four configurations of colliding ions.

A B C D

A1 207 207 207 207
A2 207 207 40 40
b1/2 0 3 3 0
b2/2 0 −3 −3 0

Emax
0 [GeV/fm3] 2080 1715 722 1202

In Fig. 7, we show the initial energy density and the difference between
the energy density at τ = 0.04 fm and the initial energy density at the sixth
order in the proper time expansion for case B. The energy density drops
fastest at the centre and more slowly at the edges of the almond-shaped
interaction region.

When we calculate the energy density, we restrict to the region of the
transverse plane for which −5 fm < |R⃗| < 5 fm and the gradient expansion
converges well. Within this region, the inhomogeneity of the energy density
in the transverse plane is almost entirely due to the asymmetry created by
the non-zero impact parameter, which produces an almond-shaped region of
overlap. The gradients of the individual charge distributions are small and
mostly irrelevant.
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Fig. 7. Energy densities in the transverse plane for case B. The left panel shows
the energy density at τ = 0 and the right panel shows the difference between the
energy densitiy at τ = 0.04 fm and the initial energy density, at the sixth order in
the proper time expansion. The units are GeV/fm3 and the axes show Rx and Ry

in fm.

The anisotropy measure defined in Eq. (3.3) was shown in Fig. 5 for the
case of uniform nuclei. The figure shows that ATL decreases as τ grows
up until the point at which the proper time expansion breaks down. When
colliding nuclei are finite and of varying density, we can study how the
behavior of ATL depends on azimuthal angle (denoted ϕ), spatial rapidity,
and impact parameter. As expected, ATL moves towards the equilibrium
value more quickly when the impact parameter is smaller, and the region
where the two ions overlap is greater. In Fig. 8, we show the measure ATL at
the eighth order in the proper time expansion as a function of τ , for different
values of η and ϕ. We consider ϕ = 0, which corresponds to R⃗ in the reaction
plane, and ϕ = π/2, where R⃗ is perpendicular to the reaction plane. The
graph shows that ATL drops more quickly when either the azimuthal angle
or the spatial rapidity increases.

We can also use the anisotropy measure ATL to demonstrate that our
results are not strongly dependent on the UV and IR scales that enter the
calculation (Qs and m in our notation). This is important because the exact
values of these scales are not known, and also because the way they enter
the calculation depends on the method chosen to perform the regularization.
In most of our calculations, we have used Qs = 2.0 GeV and m = 0.2 GeV.
In Fig. 9, we show ATL at order τ6 as a function of time for three different
values of Qs with m = 0.2 GeV (left panel) and for three different values of m
with Qs = 2.0 GeV (right panel). The graphs show that within the range of
validity of the τ expansion, the dependence on the value of these scales is
weak.
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Fig. 8. The anisotropy measure ATL defined in Eq. (3.3) at R = 5 fm and b = 6 fm.
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Fig. 9. The anisotropy ATL with R = 5 fm, b = 0, and η = 0 at order τ6 for three
different values of the saturation scale Qs (left panel) and mass parameter m (right
panel).

We can also study the anisotropy of the glasma in the transverse plane.
We consider the quantity [40]

{Axy} ≡ {T yy − T xx}
{T xx + T yy}

, (3.4)

where the angular brackets indicate integration over the transverse plane.
For comparison, we also calculate

{ATL} ≡ 3{pT − pL}
{2pT + pL}

. (3.5)

The leading order contribution to {Axy} comes from the first order term
in the gradient expansion and therefore this quantity, in contrast to {ATL},
will be sensitive to the region of the transverse plane that is close to the
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edges of the nuclei. We must verify that the integral is largely independent
of the upper limit that is used to perform the two-dimensional integration
over the transverse plane, which we call Rmax.

In Fig. 10, we show {Axy} at τ = 0.04 fm for three different values of
impact parameter, as a function of Rmax

4. On the same graph, we show
the result for {ATL} at τ = 0.04 fm and η = 0. For {ATL}, the change
with impact parameter is too small to be seen on the graph, and the result
is almost six orders of magnitude larger than {Axy} and nearly completely
independent of Rmax. Figure 10 shows that as long as the integration over the
transverse plane is restricted to a fairly central region, results for the pressure
anisotropy are largely insensitive to the upper limit of the integration.

,xy TLA A

, 1.5 fmxyA b 

, 1.25 fmxyA b 

, 1.0 fmxyA b 

TLA

max [fm]R

Fig. 10. Results for {ATL} and 7 × 105 × {Axy} at τ = 0.04 fm and η = 0 as
functions of Rmax for three different impact parameters. All values of Axy have
been multiplied by 7.5× 105. The green line shows ATL which is much bigger and
almost completely insensitive to the impact parameter.

3.3.2. Radial flow

To characterize the radial flow of the expanding glasma, we compute the
radial projection of the transverse Poynting vector P ≡ R̂iT i0, where R̂i ≡
Ri/|R⃗|. In Fig. 11, we show this quantity for fairly peripheral collisions with
b = 6 fm at R = 3 fm and ϕ = π/2, at different orders in the τ expansion.
One observes that at seventh order, our result for radial flow can be trusted
to τ ≲ 0.06 fm. Figure 12 shows the same quantity P at R = 3 fm for a
range of azimuthal angles ϕ in collisions with b = 6 fm. The flow is seen to
be significantly stronger in the reaction plane (ϕ = 0) than in the direction
perpendicular to it (ϕ = π/2).

4 There was a misprint in the caption of figure 10 of Ref. [19], where the blue line was
labeled incorrectly (it was multiplied by 7× 104 and not 7× 105).



4-A3.30 M.E. Carrington, S. Mrówczyński

Fig. 11. Radial flow to seventh order in the proper time expansion at R = 3 fm
and ϕ = π/2 in collisions with b = 6 fm.

Fig. 12. Radial flow to seventh order in the proper time expansion at R = 3 fm for
a range of azimuthal angles ϕ in collisions with b = 6 fm.

When the impact parameter is non-zero, we expect that the radial flow
in the plane transverse to the beam direction will not be azimuthally sym-
metric. In our coordinate system the x–y plane is transverse to the beam
axis, and we always choose the impact parameter along the x-axis. The left
panel of Fig. 13 shows the radial flow of the glasma for a peripheral collision
with b = 6 fm, and the right panel is a more central collision with b = 2 fm.
The flow is greater in the x than in the y direction, as expected, up to
R ≈ 5 fm in the peripheral collision and up to R ≈ 7 fm in the more central
collision. At bigger distances there is a slight increase in the radial flow at
larger azimuthal angles, but since the gradient expansion is not reliable at
distances comparable to the nuclear radii, the accuracy of the calculation is
lower in this region. The effect is difficult to see from the figures and the
black arcs that represent quarter circles are intended to make it more easily
visible.
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Fig. 13. Radial flow in the transverse plane at τ = 0.05 fm at seventh order in the
proper time expansion in collisions with b = 6 fm (left panel) and b = 2 fm (right
panel). The black curves mark lines of constant radius. See the text for further
explanation.

3.3.3. Fourier coefficients of azimuthally asymmetric flow

The azimuthal asymmetry of the collective flow is usually quantified in
terms of Fourier coefficients v1, v2, v3 . . . In Appendix B, we define these
coefficients treating the transverse Poynting vector (T 0x, T 0y) as the trans-
verse momentum of a final-state particle. Below, we discuss only the elliptic
flow coefficient, v2, and the eccentricity of the energy density distribution, ε,
which are defined as

v2 =

∫
d2R

T 2
0x−T 2

0y√
T 2
0x+T 2

0y∫
d2R

√
T 2
0x + T 2

0y

and ε = −

∫
d2R

R2
x−R2

y√
R2

x+R2
y

T 00∫
d2R

√
R2

x +R2
y T 00

. (3.6)

In Fig. 14, we show the coefficient v2 as a function of τ at orders one,
three, five, and seven of the expansion, for collisions with impact parameter
b = 2 fm. The coefficient v2 is constant in time at first order in the expansion,
since both the numerator and denominator are linear in τ . The seventh order
result clearly shows that v2 does not saturate at τ ≳ 0.05 fm, as the fifth
order result might suggest, but continues to grow with time. We note that
the calculation of v2 at very small times is numerically difficult because the
numerator and denominator both approach zero as τ → 0. The numerical
values of v2 shown in Fig. 14 are of the same order as experimental values
[41]. This is surprising as one expects that collective flow develops mostly
during the hydrodynamic evolution that follows the glasma phase.
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Fig. 14. Elliptic flow coefficient v2 versus proper time at different orders in the
proper time expansion in collisions with b = 2 fm.

It is usually assumed that the experimentally observed azimuthal anisot-
ropy in momentum space of a hadronic final state is caused by the azimuthal
anisotropy in coordinate space of the energy density and pressure of the
initial state. Physically, the idea is that the final-state momentum anisotropy
is generated by pressure gradients. To investigate if this behavior is seen in
our calculation, we have computed the eccentricity ε as a function of τ at
orders two, four, six, and eight of the expansion, for collisions with impact
parameter b = 2 fm. The results are presented in Fig. 15 which together
with Fig. 14 show that the collective elliptic flow increases in time, while
the spatial eccentricity decreases, which resembles hydrodynamical behavior
even though the glasma is far from a local equilibrium state. One also sees
that the eccentricity changes much slower than the elliptic flow coefficient.



[fm]

Fig. 15. Eccentricity ε versus proper time at different orders in the proper time
expansion in collisions at b = 2 fm.
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It is interesting to consider the dependence of the glasma elliptic flow
on the system’s initial eccentricity, which, in turn, depends on impact pa-
rameter. We show in Fig. 16 the coefficient v2 at τ = 0.06 fm computed at
seventh order of the proper time expansion and the initial eccentricity, both
as functions of impact parameter. In Fig. 17, the coefficient v2 is divided by
the initial eccentricity ε. One sees that the relative change in v2 when the
impact parameter grows from 1 fm to 6 fm is much greater than the relative
change in the ratio v2/ε. This behavior indicates that the initial spatial
asymmetry of the glasma is transmitted to the momentum asymmetry of
the system, which mimics the behavior of hydrodynamics.

[fm]b

2 ( 0.06 fm)v  

( 0)  

Fig. 16. v2 at τ = 0.06 fm and ε at τ = 0 versus the impact parameter.
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Fig. 17. Ratio of v2 at τ = 0.06 fm over ε at τ = 0 versus the impact parameter.
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3.3.4. Angular momentum

A system of relativistic heavy-ions colliding at a finite impact parameter
has initially a huge angular momentum perpendicular to the reaction plane.
The value of the initial angular momentum carried by the nucleons that
will participate in the collision is of order 105 at maximum RHIC energies
[42, 43] and even larger at LHC energies. We would like to know how
much of this initial angular momentum is transferred to the glasma that
is produced in the collision. Since the glasma in our approach is boost
invariant, we cannot compute the total angular momentum of the system
which, strictly speaking, extends in rapidity from minus to plus infinity.
Instead, we compute the angular momentum per unit rapidity which can be
obtained in a way similar to that of Ref. [16].

One defines the tensor

Mµνρ = TµνRρ − TµρRν , (3.7)

where Rµ denotes a component of the position vector. The energy-momen-
tum tensor is divergenceless and therefore ∇µM

µνρ = 0. Using Stokes’
theorem, one obtains a set of six conserved quantities

Jνρ =

∫
Σ

d3y
√

|γ|nµM
µνρ , (3.8)

where nµ is a unit vector perpendicular to the hypersurface Σ, γ is the
induced metric on this hypersurface, and d3y is the corresponding volume
element. The angular momentum is obtained from the Pauli–Lubanski four-
vector

Lµ = −1

2
ϵµνρσJ

νρuσ , (3.9)

where uµ is the four-vector that denotes the rest frame of the system.
As a check, one can easily verify that Eqs. (3.7), (3.8), and (3.9) reduce

to the usual definition of angular momentum in Minkowski space. We de-
note indices for spatial variables in Minkowski space with Greek characters
from the beginning of the alphabet, for example α ∈ (1, 2, 3) and xα is a
component of the vector (x, y, z). We use nµ = (1, 0, 0, 0) so that Σ is a
hypersurface of constant t and work in the rest frame with uµ = (1, 0, 0, 0).
Equation (3.9) becomes

Lα
Mink = −1

2
ϵαβγJβγ = −1

2
ϵαβγ

∫
d3x⃗

(
T 0βxγ − T 0γxβ

)
= ϵαβγ

∫
d3x⃗ xβP γ ,

(3.10)
where d3x⃗ represents the spatial volume element in Minkowski space, and
we have written the Poynting vector Pα ≡ T 0α.
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In Milne coordinates, we again use nµ = (1, 0, 0, 0) so that the tensor

Jνρ = τ

∫
dη d2R⃗M0νρ (3.11)

is defined on a hypersurface of constant τ . In the rest frame determined by
the four-velocity uµ = (1, 0, 0, 0), one finds

Lµ =
1

2
τ ϵ0µνρ

∫
dη

∫
d2R⃗

(
T 0νRρ − T 0ρRν

)
. (3.12)

Since the system is boost invariant, we consider the angular momentum
per unit rapidity and Eq. (3.12) leads to

dLµ

dη
=

1

2
τ ϵ0µνρ

∫
d2R⃗

(
T 0νRρ − T 0ρRν

)
. (3.13)

We note that although the right-hand side of equation (3.13) is independent
of rapidity, our calculation is only meaningful close to mid-rapidity where
boost invariance is a good approximation.

The integral over the transverse plane in equation (3.13) can be simpli-
fied using symmetry considerations. The distributions of color charges that
we use are even under the transformation Ry → −Ry. We will consider
symmetric displacements of the ions relative to the collision axis (⃗b1 = −b⃗2)
so that the transformation Rx → −Rx interchanges the distributions for
the first and second ions. Using these symmetries, one can show that each
component of the energy-momentum tensor in Milne coordinates is either
even or odd under the Rx and Ry parity transformations. Using the sym-
metry relations, one shows that the only non-zero component of the angular
momentum per unit rapidity is, as expected, the y component, which is
equal to

dLy

dη
= −τ2

∫
d2R⃗ RxT 0η . (3.14)

In all calculations, we displace the ion moving in the positive z-direction
a distance b/2 in the positive x-direction, and the ion that is moving in the
negative z-direction is shifted the same amount in the negative x-direction.
The collision therefore produces angular momentum in the negative y-direc-
tion.

In Fig. 18, we show the glasma angular momentum at five different im-
pact parameters from b = 0.5 fm to b = 2.5 fm and at five different proper
times from τ = 0.02 fm to τ = 0.06 fm. The calculation is done at the
fourth, sixth, and eighth order of the proper time expansion, which demon-
strates the convergence of the expansion at the times that are shown. The
shape of the curve shows that the angular momentum initially increases with
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impact parameter, peaking at b ≈ 2.0–2.5 fm, and then slowly decreases.
This behavior is physically reasonable: the initial increase is caused by the
increasing asymmetry of the collision, and the eventual dropoff occurs when
the centers of the nuclei become so separated that the overlap region is
significantly reduced.

Fig. 18. Angular momentum versus impact parameter at different times to fourth
(dotted lines), sixth (dashed lines), and eighth (solid lines) order of the proper time
expansion.

The shape of our graph of the angular momentum versus impact param-
eter in Fig. 18 matches the basic form of the results in Refs. [42, 43], where
the authors have calculated the angular momentum of a system of colliding
ions. However, the values of the angular momentum obtained in [42, 43] are
of order 105 at RHIC energies, and even larger at LHC energies, and are
thus five to six orders of magnitude larger than our results. Our calculation
shows that the glasma carries only a very small imprint of the primordial
angular momentum, which means that the majority of the angular momen-
tum is carried by valence quarks. This result, which shows that the idea of
a rapidly rotating glasma is not relevant at collider energies, is in agreement
with the measured global polarization of lambda hyperons which is smaller
than 0.5% at RHIC [44] and consistent with zero at the LHC [45].

The integral over Rx in Eq. (3.14) is taken up to Rx
max = 5.9 fm. We note

that the dominant contribution to the angular momentum comes from the
parts of the nuclei that are farthest from the collision center, with respect
to which angular momentum is calculated. These are the regions where the
gradient expansion we use is least to be trusted. Our results for the angular
momentum therefore do depend on the upper limit of the integral, and should
only be considered order of magnitude estimates for the glasma angular
momentum. In Ref. [19], we give a more detailed analysis of the extent to
which our results for the angular momentum of the glasma depend on the
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integration region that is used to do the calculation. These considerations
do not affect our main result that only a small fraction of the very large
angular momentum of the incoming nuclei is transferred to the glasma.

4. Jet quenching

In the second part of this review article we discuss the transport of
hard probes through a glasma. We start with a Fokker–Planck equation
whose collision terms encode information about glasma dynamics through
correlators of strong electric and magnetic fields.

4.1. Fokker–Planck equation

The Fokker–Planck equation has been frequently employed to study the
transport of heavy quarks through a thermalized quark–gluon plasma, see for
example [46–49]. Our aim is to study the transport of both heavy quarks and
high-pT light partons through glasma in the earliest period of its temporal
evolution. More specifically, we focus on the situation where the hard probes
interact with the soft classical gluon fields of the glasma, and not with quasi-
particles, which emerge at later stages.

The formulation of the method and the derivation of the Fokker–Planck
equation that we use is presented in detail in Ref. [38] but the main points
are reviewed below. Although the original derivation was presented in the
context of heavy quarks traversing a glasma, the formalism can also be used
to study relativistic light partons, as long as the diffusion approximation is
applicable. For heavy quarks, the method can be used for a broad range of
velocities and therefore provides much richer information about their spectra
than is the case for light high-energy partons.

When a heavy quark is embedded in a glasma, it is subject to stochastic
processes due to the action of color forces. The corresponding distribution
function Q(t, r⃗, p⃗ ) can therefore be decomposed into regular and fluctuating
components as follows5:

Q (t, x⃗, p⃗ ) = ⟨Q (t, x⃗, p⃗ )⟩+ δQ (t, x⃗, p⃗ ) , (4.1)

where t is time, x⃗ is position, p⃗ is momentum, and ⟨· · · ⟩ denotes a statistical
ensemble average over events in a relativistic heavy-ion collision. The regular
contribution, denoted by ⟨Q(t, x⃗, p⃗ )⟩, is assumed to be color neutral and
gauge independent, and is expressed as

⟨Q (t, x⃗, p⃗ )⟩ = n (t, x⃗, p⃗ ) 1 , (4.2)
5 As in Section 3.3.4, we denote three-vectors as x⃗ = (x1, x2, x3) and they are indexed

by α, β ∈ (1, 2, 3) or α, β = x, y, z.
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where 1 is a unit matrix in color space. We use δQ(t, x⃗, p⃗ ) to denote the
fluctuating part and we assume that ⟨δQ⟩ = 0. It is also assumed that the
regular part is a slowly varying function of time and space and is much larger
than the fluctuating part. With these conditions, starting from a Vlasov-
type equation, one is able to obtain a transport equation in the Fokker–
Planck form [38], which reads(

D −∇α
pX

αβ(v⃗ )∇β
p −∇α

pY
α(v⃗ )

)
n (t, x⃗, p⃗ ) = 0 , (4.3)

where v⃗ = p⃗/Ep is the velocity of the quark with Ep =
√
p⃗ 2 +m2

Q. We also

use D ≡ ∂
∂t + v⃗ · ∇ for the substantial or material derivative. The collision

terms entering the Fokker–Planck equation (4.3) are given by

Y α(v⃗ )n(p⃗ ) =
1

Nc
Tr [⟨Fα(t, x⃗ )δQ0 (x⃗− v⃗t, p⃗ )⟩] , (4.4)

and6

Xαβ(v⃗ ) ≡ 1

Nc

t∫
0

dt′ Tr
[〈

Fα(t, x⃗ )Fβ
(
t− t′, x⃗− v⃗t′

)〉]
, (4.5)

where δQ0 ≡ δQ(t = 0, x⃗, p⃗ ) is the initial condition. The Lorentz color
force entering the collision terms (4.4) and (4.5) is F⃗(t, x⃗ ) ≡ g(E⃗(t, x⃗ ) +

v⃗ × B⃗(t, x⃗ )). The electric E⃗(t, x⃗ ) and magnetic B⃗(t, x⃗ ) fields are given in
the fundamental representation of the SU(Nc) group. The tensor Xαβ(v⃗ )
in Eq. (4.5) can be written in terms of correlators of the glasma electric and
magnetic fields in the adjoint representation as

Xαβ(v⃗ ) =
g2

2Nc

t∫
0

dt′
[〈

Eα
a (t, x⃗ )E

β
a

(
t− t′, y⃗

)〉
+ϵβγγ

′
vγ
〈
Eα

a (t, x⃗ )B
γ′
a

(
t− t′, y⃗

)〉
+ϵαγγ

′
vγ
〈
Bγ′

a (t, x⃗ )Eβ
a

(
t− t′, y⃗

)〉
+ϵαγγ

′
ϵβδδ

′
vγvδ

〈
Bγ′

a (t, x⃗ )Bδ′
a

(
t− t′, y⃗

)〉]
, (4.6)

where y⃗ = x⃗ − v⃗t′. For future convenience, we also define v⃗ = (v∥, v⃗⊥) and
v⊥ = |v⃗⊥|.

6 There is a typographic error in Eq. (5) of [21] and Eq. (2) of [22], which are analogous
to Eq. (4.5). The factor multiplying the integral in these equations is 1/(2Nc) and
should be 1/Nc.



The Earliest Phase of Relativistic Heavy-ion Collisions 4-A3.39

The field correlators in Eq. (4.6) are non-local and consequently they are
not gauge invariant. As discussed in Ref. [38], the problem can be remedied
by inserting between the two fields the link operator

Ω (t1, x⃗1|t2, x⃗2) ≡ P exp

ig (t1,x⃗1)∫
(t2,x⃗2)

dsµA
µ
c (s)T

c

 , (4.7)

where P denotes ‘left later’ path ordering. Since analytic calculations be-
come prohibitively difficult with the link operator included, we use the ex-
pression in Eq. (4.6). In Section 4.3.6 we give a quantitative estimate of the
size of the link operator and argue that the effect of neglecting it is numer-
ically small. The physical reason is the very short time intervals we deal
with.

The equilibrium distribution function neq(p⃗ ) ∼ exp(−Ep⃗/T ), where T
is the temperature of the system, should solve the Fokker–Planck equation.
This requires a relation between Xαβ(v⃗ ) and Y α(v⃗ ) of the form

Y α(v⃗ ) =
vβ

T
Xαβ(v⃗ ) , (4.8)

where T is the temperature of an equilibrated quark–gluon plasma that has
the same energy density as the glasma or, equivalently, the temperature the
glasma would have, if it equilibrated without expanding. Our calculation
gives no information about this temperature, but in Section 4.2 we discuss
how to estimate its value. Since the formula (4.4) is difficult to apply to a
non-equilibrium system, we use the relation (4.8) to determine Y α(v⃗ ). As
we will show below, the quantity Y α(v⃗ ) is needed to obtain dE/dx, but it
is not required for a calculation of q̂.

When the system under consideration is translationally invariant, the
tensor Xαβ(v⃗ ) is independent of the variable x⃗ present on the right-hand
side of Eq. (4.5). In most of this section, we consider collisions of nuclei
which are infinite and homogeneous in the transverse plane. Such a system
is translationally invariant in the transverse plane but is not completely uni-
form along the z-axis. We therefore expect a weak dependence of Xαβ(v⃗ )
on the longitudinal coordinate z which is not explicitly shown on the left-
hand side of Eqs. (4.4) and (4.5). This is discussed in Section 4.3.2. In
Section 4.3.5 we consider realistic finite nuclei and verify that the momen-
tum broadening coefficient is largely independent of the average transverse
coordinate.

The quantities Y α(v⃗ ) and Xαβ(v⃗ ) in Eqs. (4.4) and (4.5) are expected
to saturate at large times. This can be proven analytically in equilibrium
in the long-time limit, as a consequence of the fact that the correlators in
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Eqs. (4.4) and (4.5) are translation invariant. In our inhomogeneous system,
time independence occurs due to finite correlation lengths. If the correlator
⟨Fα(t, x⃗ )Fβ(t′, x⃗ ′ )⟩ vanishes for |x⃗ ′ − x⃗| > λx or |t′ − t| > λt, the integral
(4.5) saturates for t > λt or t > λx/v. In practice, the saturation of Xαβ(v⃗ )
at long times and its approximate independence on z provide an estimate
of the range of validity of the approximations that we use to obtain the
transport coefficients of the glasma. We note that we have not indicated
dependence on time on the left-hand side of Eqs. (4.4) and (4.5) since the
transport coefficients that we will calculate are only meaningful when at
least approximate saturation is observed.

The physical interpretation of the collision terms Y α(v⃗ ) and Xαβ(v⃗ ) is
easy to understand. As discussed in the textbook [50], they determine the
average momentum change per unit time, and the correlation of momentum
changes per unit time as follows:

⟨∆pα⟩
∆t

= −Y α(v⃗ ) , (4.9)〈
∆pα∆pβ

〉
∆t

= Xαβ(v⃗ ) +Xβα(v⃗ ) . (4.10)

The collisional energy loss dE/dx and the transverse momentum broadening
parameter q̂ of a heavy quark in a glasma are obtained from the results in
Eqs. (4.9) and (4.10) using the equations

dE

dx
=

vα

v

⟨∆pα⟩
∆t

, (4.11)

q̂ =
1

v

(
δαβ − vαvβ

v2

) 〈
∆pα∆pβ

〉
∆t

, (4.12)

where v = |v⃗ |. Equations (4.8), (4.11), and (4.12) give

dE

dx
= − v

T

vαvβ

v2
Xαβ(v⃗ ) , (4.13)

q̂ =
2

v

(
δαβ − vαvβ

v2

)
Xαβ(v⃗ ) . (4.14)

Using the techniques of the previous sections, we can now calculate all
of the field correlators that enter the tensor Xαβ(v⃗ ) in Eq. (4.6). When the
glasma system is translationally invariant in the transverse plane, the cor-
relator (2.22), which is the building block to construct the field correlations
from Eq. (4.6), takes the form

Bij(r) = δijC1(r)− r̂ir̂jC2(r) , (4.15)
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where r ≡ |x⃗⊥ − y⃗⊥| and r̂i ≡ ri/r. The functions C1(r) and C2(r) are

C1(r) ≡ m2K0(mr)

g2Nc (mrK1(mr)− 1)

{
exp

[
g4Ncµ (mrK1(mr)− 1)

4πm2

]
− 1

}
,

(4.16)

C2(r) ≡ m3rK1(mr)

g2Nc (mrK1(mr)− 1)

{
exp

[
g4Ncµ (mrK1(mr)− 1)

4πm2

]
− 1

}
.

(4.17)

At the lowest order in the τ expansion, the correlators of the electric and
magnetic fields are given by〈

Ez(0)
a (x⃗⊥)E

z(0)
b (y⃗⊥)

〉
= g2Ncδ

ab
(
2C2

1 (r)− 2C1(r)C2(r) + C2
2 (r)

)
,〈

Bz(0)
a (x⃗⊥)B

z(0)
b (y⃗⊥)

〉
= g2Ncδ

ab
(
2C2

1 (r)− 2C1(r)C2(r)
)
,〈

Ez(0)
a (x⃗⊥)B

z(0)
b (y⃗⊥)

〉
= 0 . (4.18)

All higher-order correlators are given by similar expressions involving the
functions C1(r) and C2(r) and their derivatives. The tensor Xαβ(v⃗ ) also
involves correlators of fields at the same point, and we treat these as two-
point correlators.

We comment that although collisional energy loss and the momentum
broadening coefficient are obtained from the two specific projections of the
tensor Xαβ(v⃗ ) in Eqs. (4.13) and (4.14), we have calculated all of the electric
and magnetic field correlators. These expressions could be used in other
calculations. For example, one could solve the Fokker–Planck equation and
determine how the distribution functions of hard probes evolve in time.

4.2. Physical picture

Heavy and high-pT probes are produced at the very first moments of the
collision and then propagate through the evolving glasma. When the magni-
tude of the velocity of the probe v is close to one it is highly relativistic, and
could be a heavy or light quark, or gluon. When v is significantly less than
one, the probe is necessarily a heavy quark. We will study only the behavior
of quark probes, but the tensor Xαβ(v⃗ ) for a gluon and, consequently, q̂
and dE/dx, could be obtained from Eq. (4.5) by multiplying by a factor
(N2

c − 1)/2N2
c , which equals 4/9 for Nc = 3.
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Since experiments at RHIC and the LHC focus on hard probes from the
momentum space mid-rapidity region, y ∈ (−1,+1), we are primarily inter-
ested in the transport properties of probes moving mostly perpendicularly
to the beam axis. The momentum-space rapidity y is related to the longitu-
dinal component of the probe’s velocity by y = 1

2 ln
1+v∥
1−v∥

, and therefore the
values y = ±1 correspond to v∥ = ±0.76, and the mid-rapidity value y = 0
corresponds to strict transverse motion, v∥ = 0. We use the parameter v∥
instead of y to quantify deflection from transverse motion, and we consider
quarks with 0 ≤ v∥ < 0.76.

An idealized picture of a probe emerging from the glasma at very early
proper times is shown in Fig. 19, where the glasma fields at the zeroth
order in the proper time expansion are represented by colored flux tubes.
At this order, the electric and magnetic fields are purely longitudinal and
static. There are two qualitatively different correlation lengths, which we will
denote λ∥ and λ⊥. The longitudinal correlation length λ∥ is proportional to
the distance between the nuclei and can be identified with the proper time τ .
The transverse correlation length λ⊥ can be inferred from the correlators
(4.18). Qualitatively, the transverse correlation length obeys Q−1

s ≤ λ⊥ ≤
Λ−1
QCD.

Fig. 19. Cartoon of the zeroth order glasma fields and a probe moving mostly
transverse to the collision axis.

The collisional energy loss and the momentum broadening parameter are
both built up during the time that the probe spends within the domain of
correlated fields. At the zeroth order, this time is determined by the trans-
verse correlation length and the orientation and magnitude of the probe’s ve-
locity. The transport coefficients will saturate when the probe leaves the re-
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gion of correlated fields7. These simple arguments indicate that the Fokker–
Planck methodology we are using might be well suited to describe the prob-
lem of a hard probe moving through a glasma, at least at very early times.

The simple picture presented in Fig. 19 is valid at the zeroth order, but
at later times, it does not accurately describe the glasma. As τ increases,
transverse electric and magnetic fields develop, and the glasma fields can
grow or decrease rapidly. Higher and higher orders in the τ expansion are
needed to describe the glasma fields, as τ increases. Our method will work
if saturation is reached before the τ expansion that is used to calculate the
field correlators breaks down.

In addition to determining how long a probe spends in the region of
correlated fields, the probe’s velocity affects the transport coefficients in
another way. To see this, we look at Eqs. (4.5), (4.13), and (4.14), and use
the form of the Lorentz force. At the zeroth order, the integrand that gives
collisional energy loss is proportional to

vαvβFα(0)Fβ(0) = g2v2∥E
z(0)(x⃗⊥)E

z(0)
(
x⃗ ′
⊥
)
, (4.19)

and the integrand for momentum broadening is proportional to(
δαβ − vαvβ

v2

)
Fα(0)Fβ(0) = g2

v2⊥
v2

(
Ez(0)(x⃗⊥)E

z(0)
(
x⃗ ′
⊥
)

+v2Bz(0)(x⃗⊥)B
z(0)

(
x⃗ ′
⊥
))

. (4.20)

We see that at the zeroth order the collisional energy loss is caused by the
electric field and vanishes when the probe moves in the transverse direction.
In contrast, zeroth order momentum broadening is caused by both electric
and magnetic fields, and is maximal when the probe moves transversely. We
will show that at higher orders the same behavior is observed: for fixed v,
when v⊥ increases and v∥ decreases, one finds that the collisional energy loss
decreases and the momentum broadening increases.

We emphasize that the arguments presented in this section give a qual-
itative description of the behavior of the glasma at very early times, cor-
responding to the lowest orders of the τ expansion. Collisional energy loss
and momentum broadening at higher orders in the τ expansion require cal-
culations to understand the full picture.

7 We note that we consider only the glasma phase, where coherent fields are present
and correlation lengths are sizable. We do not consider later kinetic or hydrody-
namic stages, where further broadening of the momenta of hard probes occurs due
to scattering on plasma constituents.
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4.3. Numerical results for q̂ and dE/dx

All our results are calculated for Nc = 3 and g = 1. We use Qs = 2 GeV
and m = 0.2 GeV except for Section 4.3.3, where we consider different
values of Qs and m. We work at mid-spatial-rapidity, or η = z = 0, except
for Section 4.3.2, where the η dependence of q̂ is studied.

The correlators of chromodynamic fields that enter the tensor Xαβ(v⃗ )
are restricted to the forward light-cone region, where the glasma description
is valid. To take this condition into account, the integrand in Eq. (4.6) is
multiplied by

Θ
(
t2 − z2

)
Θ
((

t− t′
)2 − (z − v∥t

′)2) . (4.21)

If we use v∥ = 0 and look at z = 0, both step functions can be ignored
as they are always unity. When v∥ is non-zero, the second step function in
(4.21) has the effect of reducing q̂ and dE/dx. In almost all calculations,
we choose z = 0 so that the first step function plays no role. The exception
is Section 4.3.2, where we study the dependence of our results on spatial
rapidity.

As explained in Section 4.1, in order to calculate dE/dx we need the
temperature T of an equilibrated quark–gluon plasma whose energy density
is the same as the energy density of the glasma. The energy density of an
equilibrium free quark–gluon plasma equals

εQGP =
π2

60

(
4
(
N2

c − 1
)
+ 7NfNc

)
T 4 , (4.22)

where only quarks of Nf flavors with masses much smaller than the tem-
perature should be included. The effective temperature of the glasma can
therefore be estimated from the glasma energy density.

4.3.1. Time dependence of q̂ and dE/dx

The momentum broadening coefficient q̂ and the collisional energy loss
dE/dx, both for an ultra-relativistic hard probe moving perpendicularly to
the beam axis with v = v⊥ = 1, are shown as a function of τ in Figs. 20 and
21. The dependence of both transport coefficients on the order of the τ ex-
pansion illustrates the convergence of the expansion. Taking into account
higher order contributions in the τ expansion extends the range of validity
of the result. At very early times all orders of the τ expansion agree well.

In Fig. 20 we observe that when all terms up to order τ7 are included,
the time evolution of q̂ shows initial growth, and then flattening, followed by
more rapid growth (which appears after τ ∼ 0.09 fm). The region where q̂
flattens shows saturation. The rapid increase of q̂ at later times is not phys-
ical, but reflects the breakdown of the proper time expansion. At order τ7,
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Fig. 20. The momentum broadening coefficient q̂ as a function of τ at different
orders of the proper time expansion. The seventh order result cannot be seen
because it lies directly under the sixth order one.

[GeV/fm]
dE

dx


4

[fm]

Fig. 21. The energy loss as a function of τ at different orders of the proper time
expansion up to sixth order. The dashed lines are divided by an effective temper-
ature obtained from the glasma energy density (see the text for details) and the
lighter colored solid curves are made with T = 1 GeV.

the highest value of q̂ that is obtained before the proper time expansion
breaks down is about 6 GeV2/fm. The coefficient q̂ was also calculated in
Ref. [51] using real-time QCD simulations. The time evolution of q̂ found in
this work is qualitatively similar to our finding. Our result is smaller, but
still of comparable size.

Recently, calculations of q̂ have been done using a kinetic theory descrip-
tion of an anisotropic quark–gluon plasma [52, 53], which is valid between the
very early times where the glasma exits and the onset of hydrodynamics.
The results of this calculation smoothly connect the two regimes, and sup-
port the idea that the pre-equilibrium phase plays an important role in jet
quenching.
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The collisional energy loss −dE/dx of a hard parton moving with v =
v⊥ = 1 is shown as a function of τ in Fig. 21. In order to calculate dE/dx,
we need the temperature T of an equilibrated quark–gluon plasma whose
energy density is the same as the energy density of the glasma. Using the
formula for the energy density of an equilibrium non-interacting quark–gluon
plasma, the effective temperature of the glasma can be estimated from the
glasma energy density. Figure 22 shows the temperature obtained from
Eq. (4.22) with Nf = 2 and the eighth-order energy density from a collision
of homogeneous nuclei. In Fig. 21, the curves for which the order of the
expansion is indicated with a prime are obtained using this temperature.
The lighter curves are obtained using a constant value T = 1 GeV, which is
not as well motivated from a physics point of view but has the advantage of
not mixing the dependence of the two calculations, −dE/dx and E , on the
proper time expansion. The figure shows that the results at different orders
converge well up to τ ≈ 0.06 fm for both calculations.

Fig. 22. The effective temperature as a function of the proper time, determined by
comparison with an equilibrium system with the same energy density.

The behavior of the collisional energy loss dE/dx is very different from
what is seen from the momentum broadening parameter q̂. Only the terms
at τ2, τ4, and τ6 order contribute to the final result. The zeroth and odd
orders vanish because they are proportional to some power of v∥, which is
zero in the case shown in Fig. 21. The collisional energy loss increases up to
around τ = 0.05–0.06 fm and for larger times, the expansion rapidly breaks
down.
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From the discussion in Section 4.2 we know that the collisional energy
loss is much more sensitive to the value of the longitudinal component of the
velocity than q̂ is because the leading order contributions are proportional
to v∥. In this sense, the case of purely transverse motion in Fig. 21 might
not represent typical behavior. We therefore show dE/dx in Fig. 23, also
for v = 1, but now with v⊥ = v∥ = 1/

√
2. The shape of dE/dx is not

significantly different from the one shown in Fig. 21, but all orders in the
τ expansion contribute to the final result. The collisional energy loss is
noticeably bigger and equals approximately 0.9 GeV/fm at its maximum, at
around τ = 0.05 fm. The τ expansion breaks down soon after this point.
The absence of clear evidence of saturation indicates that our results for
collisional energy loss should be considered order of magnitude estimates
only.

[fm]

[GeV/fm]
dE

dx


Fig. 23. Time evolution of dE/dx for v = 1 and v∥ = v⊥ = 1/
√
2.

4.3.2. Dependence of q̂ on velocity and space-time rapidity

We first explore the dependence of q̂ on the probe’s velocity. We want
to understand the relative importance of the two velocity-dependent effects
discussed in Section 4.2 — the amount of time the probe spends in the region
of correlated fields and the dependence of the Lorentz force on the direction
of the probe’s velocity.

In Fig. 24, we show the dependence of q̂ on the speed of a hard probe
when the probe moves in the transverse direction. The results calculated
at order τ4 and τ5 are shown to indicate the region of τ where the expan-
sion converges. For both values of v = v⊥, the result for q̂ can be trusted
to approximately 0.07–0.08 fm. We observe that at very early times the
momentum broadening coefficient is largely independent of v = v⊥, but dif-
ferences appear at longer times. The value of q̂ for slower quarks flattens
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and then starts rapidly growing again, whereas q̂ for ultra-relativistic quarks
slightly decreases. This shows that when the transverse velocity of the probe
increases at fixed v∥ = 0, even though the Lorentz force contribution to q̂
increases (see Eq. (4.20)), the dominant effect is the reduction of the amount
of time the probe spends in the domain of correlated fields, which results in
a reduction in momentum broadening. This result agrees with the findings
of Ref. [51], where the momentum broadening parameter of massless quarks
is consistently smaller than for larger mass quarks, throughout the whole
time evolution.

[fm]

2ˆ [GeV /fm]q

Fig. 24. The time evolution of q̂ at order τ5 for v = v⊥ = 1 (solid red) and
v = v⊥ = 0.9 (dashed blue). The dotted and dash-dotted lines represent the
corresponding results at order τ4.

In Figs. 25 and 26 we show the momentum broadening parameter for
several cases with non-zero v∥. Figure 25 shows q̂ for v⊥ = 0.9 and two
values of v. When the perpendicular component of the velocity v⊥ is fixed,
both probes spend the same amount of time in the region of correlated fields
and q̂ is affected by the velocity of the probe only because the Lorentz force
is velocity-dependent. Equation (4.20) shows that, at very early times, q̂ de-
creases when v increases at fixed v⊥ because the contribution from electric
fields decreases. Figure 25 shows that this effect is also seen at later times.

Figure 26 shows q̂ with v = 1.0 for two different values of v⊥. When v is
fixed and v⊥ varies, we also include the effect of changing the amount of time
the probe spends in the region of correlation. In Fig. 26 we see that at small
times the probe with larger v⊥ has larger q̂ due to the larger Lorentz force,
but as τ increases, the curves with large and small v⊥ cross each other. This
happens because probes with larger v⊥ escape from the region of correlated
fields before the glasma fields become very large, but probes with smaller v⊥
(and larger v∥) remain in the domain of correlated fields for a longer time
and eventually interact with very large fields.
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[fm]

2ˆ [GeV /fm]q

Fig. 25. The time evolution of q̂ with v = 0.9, v⊥ = 0.9 and v = 1, v⊥ = 0.9.

[fm]

2ˆ [GeV /fm]q

Fig. 26. The time evolution of q̂ with v = 1 and v⊥ = 1, v⊥ = 0.9, v⊥ = 0.8.

We also note that a comparison of Figs. 24, 25, and 26 shows that when
v⊥ = v, the τ expansion breaks down at approximately the same point that
the saturation regime disappears, but when v⊥ ≈ 0.9v or smaller, the τ ex-
pansion converges fairly well even though no significant saturation regime
is observed. This suggests that including higher orders in the τ expansion
could extend the region of saturation when v⊥ = v.

We now explore the dependence of the evolution of q̂ on the spatial
rapidity, η, which is related to the initial position of the probe on the z-axis.
Figure 27 shows the time evolution of q̂ for η = 0, η = 0.1, and η = 0.2. In
Fig. 28, we display the results for q̂ with η = 0.2 computed at order τ4 and
order τ5. The figure indicates that our results can be trusted to τ ∼ 0.06 fm.
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[fm]

2ˆ [GeV /fm]q

Fig. 27. The time evolution of q̂ for v = v⊥ = 1 and η = 0, η = 0.1, η = 0.2.

[fm]

2ˆ [GeV /fm]q

Fig. 28. The time evolution of q̂ for v = v⊥ = 1 and η = 0.2 at τ4 and τ5 order.

We consider only small values of η because our approach is expected to
work best in the mid-spatial-rapidity region, where the CGC approach that
we use is most reliable. The momentum broadening parameter depends only
weakly on η in the region where the curves flatten. Figures 27 and 28 show
that at least until the region of approximate saturation ends, the result for
q̂ is largely independent of spatial rapidity. This result verifies that there is
a range of proper times for which the boost-invariant ansatz that was used
to calculate the glasma correlators is compatible with the approximations
that were used to derive the Fokker–Planck equation.

4.3.3. Dependence on IR and UV energy scales

The UV scale Qs and the IR regulator m enter our calculation as param-
eters that are related to the saturation and confinement scales. We remind
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the reader that we must stay below Qs, or the assumption that the glasma is
composed of classical gluon fields breaks down, and above m, so that we do
not enter the regime where non-perturbative effects become dominant. The
numerical values of these scales cannot be precisely determined within the
formalism we are using. The energy-scale interval from m to Qs, where the
CGC approach we use is valid, is rather narrow and it is therefore expected
that calculated quantities show some scale dependence.

The typical form of this dependence is shown in Fig. 9 for one of the
quantities we calculated from the energy-momentum tensor. In Ref. [21],
the dependence of q̂ on Qs and m was shown to be stronger than what is
seen in Fig. 9, but this is not inherently surprising since there is no reason
that different quantities should not have different scale dependence. In the
calculation of the momentum broadening parameter, the scale dependence
enters both through the two-point correlator and the regularization scheme.
It is therefore not unexpected that the scale dependence is stronger than
for quantities calculated from the energy-momentum tensor. We have found
that the dependence of q̂ on Qs and m can be mostly controlled by holding
fixed the ratio Qs/m. This is shown in Fig. 29.

2ˆ [GeV /fm]q

[fm]

Fig. 29. The momentum broadening coefficient q̂ versus τ for different values of Qs

with Qs/m = 10. The curves are marked with different colors and patterns from
Qs = 1.9 GeV (magenta solid line) to Qs = 2.1 GeV (grey dotted line).

The dependence of q̂ on the saturation scale can also have a physical
interpretation. Since the saturation scale Qs increases with the collision
energy (Qs ∼ 1–2 GeV at RHIC and Qs ∼ 2–3 GeV at the LHC [32]), our
calculations predict the growth of q̂ with the collision energy. A reduction
in q̂ at RHIC energies when compared to LHC energies was found by the
JET Collaboration [54], see also Ref. [55].



4-A3.52 M.E. Carrington, S. Mrówczyński

4.3.4. Regularization dependence

All of the results we have obtained for transport coefficients require a
regularization procedure. The tensor Xαβ(v⃗ ) in Eq. (4.6) is calculated from
a time integral with a lower limit t′ = 0, which corresponds to the point
where r = 0. The integrand depends on the functions C1(r) and C2(r)
defined in Eq. (4.16) and their derivatives, but C1(r) diverges as r approaches
zero. We note that this divergence is a natural consequence of the fact that
the classical CGC approach breaks down at small distances.

We use two different methods to regularize the divergence to verify that
our results are largely independent of the regularization method. To explain
this, we write the integrand for either momentum broadening or collisional
energy loss as a function of the form f(t′, r, z), so that the transport coef-
ficient is obtained from the integral

∫ t
0 dt

′ f(t′, r, z) (see Eqs. (4.13), (4.14),
and (4.6)). The first regularization method we use is to cut off the singular
part of the integrand at a distance rs = Q−1

s by defining the regularized
function

f reg 1(t′, r, z) ≡ Θ(rs − r)f
(
t′, rs, z

)
+Θ(r − rs)f

(
t′, r, z

)
. (4.23)

The transport coefficient is computed as
∫ t
0 dt

′f reg 1(t′, v⊥t
′, v∥t

′). This
method of regularization was used in all results outside of this section.

The second regularization method is to subtract the leading order O(1/r)
divergences before multiplying by the step function. We can represent this by
defining f̃(t′, r, z) = f(t′, r, z)− a/r with a = limr→0 rf(t

′, r, z) and writing

f reg 2(t′, r, z) ≡ Θ(rs − r)f̃
(
t′, rs, z

)
+Θ(r − rs)f

(
t′, r, z

)
. (4.24)

The transport coefficient is given as
∫ t
0 dt

′f reg 2(t′, v⊥t
′, v∥t

′).
The results of the two different regularization methods are depicted in

Fig. 30, where the fifth order results are shown. The figure shows that the
dependence on the regularization is fairly weak.

4.3.5. q̂ in collisions of finite nuclei

So far we have considered only the transport coefficients q̂ and dE/dx
for the case of a homogeneous glasma, which means that the incoming nu-
clei are assumed to be infinitely extended and homogeneous in the plane
transverse to the beam direction. A realistic modeling of jet quenching in
relativistic heavy-ion collisions requires treating nuclei as finite objects of
varying density. We have generalized our previous calculations of q̂ and
dE/dx so that the glasma under consideration is produced in collisions of
finite nuclei with a Woods–Saxon density distribution. The field correla-
tors are computed using a first-order gradient expansion. The correlator
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[fm]

2ˆ [GeV /fm]q

Fig. 30. The time evolution of q̂ at order τ5 for v = v⊥ = 1 regularized in two
different ways (see Eqs. (4.23) and (4.24)).

⟨βi
n(x⃗⊥)β

j
n(y⃗⊥)⟩ is expanded around R⃗ ± b⃗/2, where R⃗ = 1

2(x⃗⊥ + y⃗⊥) and
only the first two terms of the expansion are included. We note that the cor-
relator ⟨βi

n(x⃗⊥)β
j
n(y⃗⊥)⟩ is independent of R⃗ if the system is translationally

invariant in the transverse plane.
Figure 31 shows q̂ versus R for central collisions (b = 0) at τ = 0.06 fm

at different orders of the proper time expansion up to sixth order. The
calculation is done for a lead nucleus with radius RA = 7.4 fm. In the outer
part of the system, the charge density drops rapidly to zero and the gradient
expansion is not reliable. In the 0 < R ≲ 4 fm region, which covers most
of the glasma’s volume, q̂ depends on R only weakly. This means that the
assumption of translation invariance in the transverse plane is valid to good
accuracy in this domain.

Fig. 31. q̂ versus R for central collisions at τ = 0.04 fm and different orders of the
proper time expansion from 3 to 6.
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4.3.6. Gauge dependence

In this section, we consider the issue of the gauge dependence of our
results. As discussed in Section 4.1, the tensor defined in Eq. (4.5) is not
gauge invariant due to the absence of the link operator (4.7) in the field
correlators. We can obtain an estimate of the size of the effect of this ap-
proximation by computing the statistical ensemble average of the operator in
Eq. (4.7). The crucial observation is that the magnitude of the tensor (4.5)
is saturated after a time of approximately 0.06 fm. Consequently, the time
interval covered by the link operator is very short and thus the operator can
be approximated by the first three terms in the expansion of the exponential
function in (4.7). Since the ensemble average of a single potential vanishes,
we obtain

1

N2
c − 1

〈
Ω
(
t, x⃗ | t− t′, x⃗− v⃗ t′

)〉
= 1− g2Nc

2 (N2
c − 1)

⟨Aµ
a(x)A

ν
a(x)⟩∆sµ∆sν .

(4.25)
We compute the expression (4.25) in the zeroth order of the proper time

expansion. Using the correlator (2.38) with Λ = Qs and assuming that the
velocity v⃗ of the hard probe is perpendicular to the collision axis, one obtains

1

N2
c − 1

〈
Ω
(
t, x⃗ | t− t′, x⃗− v⃗ t′

)〉
= 1− NcQ

2
s

8π

[
ln

(
Q2

s

m2
+ 1

)
− Q2

s

Q2
s +m2

]
v⃗ 2t′ 2 . (4.26)

With Nc = 3, Qs = 2 GeV, m = 200 MeV, v⃗ 2 = 1, and t′ = 0.06 fm, we find

1− 1

N2
c − 1

〈
Ω
(
t, x⃗ | t− t′, x⃗− v⃗ t′

)〉
= 0.16 . (4.27)

This estimate most likely provides an upper limit for two reasons. First, we
have computed the potential correlator at the zeroth order of the proper-time
expansion which corresponds to the strongest fields. Second, the correlator
(4.25) has been taken at the minimal distance where its size is maximal.

Equation (4.27) shows that the ensemble average of the link operator
per color degree of freedom differs from unity by 0.16, which is not a big
number. This result supports the idea that neglecting the link operator in
the collision term of the Fokker–Planck equation does not invalidate our
results.

4.4. Glasma impact on jet quenching

We have found that in the glasma phase, the momentum broadening
parameter q̂ can be as large as q̂ ≈ 6 GeV2/fm. The value of q̂ in equilibrium
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quark–gluon plasma for a hard quark of pT > 40 GeV is 2 < q̂/T 3 < 4,
where T is the plasma temperature, as inferred from experimental data by
the JETSCAPE Collaboration [56]. In the discussion below we take q̂ = 3T 3.
Since the temperature of the plasma produced at the LHC evolves from
roughly 450 to 150 MeV [57], the momentum broadening coefficient varies
from q̂ ≈ 1.0 GeV2/fm to q̂ ≈ 0.05 GeV2/fm, which is much smaller than
the value of q̂ ≈ 6 GeV2/fm for the glasma that we have obtained. However,
since the pre-equilibrium phase exists for less than 1 fm, it is not clear if the
glasma contributes significantly to the total momentum broadening that the
probe experiences when it moves through the system.

The radiative energy loss per unit length of a high-energy parton travers-
ing a medium of length L is proportional to the total accumulated transverse
momentum broadening, denoted by ∆p2T. In the case of a static medium,
where q̂ is constant, we have ∆p2T = q̂L. When the plasma is not static and
q̂ is time-dependent, the transverse momentum broadening is

∆p2T =

L∫
0

dt q̂(t) , (4.28)

where the probe is assumed to move with the speed of light.
Figure 32 is a schematic representation of the time dependence of the mo-

mentum broadening coefficient throughout the whole history of the probe’s
journey across the deconfined matter produced in a relativistic heavy-ion
collision. The first part of the figure shows the rapid growth of q̂(t) to a
maximal value q̂max ≈ 6 GeV2/fm at tmax ≈ 0.06 fm. This is a rough de-
scription of the evolution of q̂ in the glasma phase from our calculation. The
value of q̂(t) subsequently decreases at later times. At t0 ≈ 0.6 fm it has the
value of q̂0 ≈ 1.4 GeV2/fm (these numbers are estimates inferred from exper-
imental data and are discussed in more detail below). We comment that the
saturation region observed clearly in Fig. 20 is not seen in Fig. 32 because
different time scales are used in the two figures. The time interval between
tmax and t0 is beyond the region of validity of the proper time expansion and
the rapid decrease of q̂ in this domain is not captured by our calculation,
but it is reproduced by the simulations in Ref. [51]. Using linear interpola-
tion between the points q̂(0) = 0, q̂(tmax) = q̂max, and q̂(t0) = q̂0, one finds
the following non-equilibrium contribution to the accumulated transverse
momentum broadening

∆p2T

∣∣∣non−eq
=

t0∫
0

dt q̂(t) =
1

2
q̂maxt0 +

1

2
q̂0(t0 − tmax) . (4.29)
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Fig. 32. Schematic representation of the temporal evolution of q̂(t).

At t > t0, we have equilibrated quark–gluon plasma which expands hy-
drodynamically. Using ideal one-dimensional boost invariant hydrodynam-
ics, the temperature decreases as

T = T0

(
t0
t

)1/3

. (4.30)

Consequently, the momentum broadening coefficient depends on time as

q̂(t) = 3T 3
0

t0
t
= q̂0

t0
t
, (4.31)

and the equilibrium contribution to ∆p2T is

∆p2T

∣∣∣eq =

L∫
t0

dt q̂(t) = 3T 3
0 t0 ln

L

t0
. (4.32)

To estimate the role of the glasma in jet quenching we need, in addition
to q̂max and tmax which come from our calculation, the following param-
eters: T0, t0, q̂0, and L. The time t0, which marks the beginning of the
hydrodynamic evolution, and the initial temperature T0, which determines
the system’s initial energy density, are obtained by comparing hydrodynamic
models with experimental data on particle spectra and collective flows. The
initial time cannot be too small as the system should reach, at least approx-
imately, local thermodynamic equilibrium for a hydrodynamic approach to
be applicable. On the other hand, the initial time cannot be too big because
in that case, the initial shape of the system would be washed out and hy-
drodynamics would not be able to reproduce the Fourier coefficients of the
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collective flow. We use T0 = 0.45 GeV and t0 = 0.6 fm taken from [57] and
[56], respectively. The momentum broadening parameter is inferred from ex-
perimental data on jet quenching through complex modeling of the process of
hard probe propagation through the evolving plasma. Using again the results
of the JETSCAPE Collaboration [56], we take q̂0 ≈ 3T 3

0 ≈ 1.4 GeV2/fm.
Finally, keeping in mind that the radius of a heavy nucleus such as Au or
Pb is about 7 fm, we assume that the typical path length of a hard probe
in the quark–gluon plasma is L = 10 fm. The length scale L is chosen to be
slightly bigger than a typical nuclear radius because the effect of jet quench-
ing is particularly evident when the point of the jet production is close to
the system’s surface. In this case, one jet easily escapes into vacuum, while
the jet going in the opposite direction propagates through the plasma and,
in central collisions, its path can be as long as the diameter of the nucleus.
Substituting these values into Eqs. (4.29) and (4.32), we find

∆p2T

∣∣∣non-eq
∆p2T

∣∣∣eq = 0.93 . (4.33)

We note that this result is not very sensitive to the parameters T0, t0, q̂0,
and L, or the precise shape of the peak in Fig. 32. Equation (4.33) shows
that the non-equilibrium phase gives a contribution to the radiative energy
loss which is comparable to that of the equilibrium phase. The conclusion is
that the glasma plays an important role in jet quenching, which contradicts
the commonly made assumption that the contribution of the glasma phase
to momentum broadening is negligible.

5. Summary, conclusions, and outlook

We have used a CGC approach and an expansion in proper time to study
various characteristics of glasma from the earliest phase of relativistic heavy-
ion collisions. We have considered two classes of glasma characteristics:
those which are encoded in the glasma energy-momentum tensor and those
which determine glasma transport properties. The first class includes: the
energy density, transverse and longitudinal pressures, Poynting vector, and
angular momentum. The transverse momentum broadening of a hard probe
and its collisional energy loss belong to the second class. Our results, which
are obtained up to the sixth or eighth order in the τ expansion, are reliable
to about τ = 0.06–0.07 fm. The results have complicated structure but are
analytic and thus free of the numerical artifacts that are an inherent part of
the simulations which are usually used in studies of glasma.

Our general conclusion is that the glasma that exists during the earli-
est phase of relativistic heavy-ion collisions plays an important role in the
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temporal evolution of the system produced in the collisions. This is impor-
tant because phenomena observed in the final state have their origins in the
glasma. The most important specific findings of our study are the following:

— The glasma energy density and transverse pressure decrease with time,
while the longitudinal pressure increases. Consequently, the glasma
anisotropy decreases. This behavior marks the beginning of glasma
evolution towards thermodynamic equilibrium.

— Initially the Poynting vector is zero but the collective flow, both radial
and azimuthally asymmetric, develops very rapidly and, consequently,
should contribute to the observed collective flow of final-state particles.

— A growth of glasma elliptical flow is associated with a decrease in the
spatial eccentricity of the system which strongly resembles hydrody-
namic behavior. This result might partially explain why a hydrody-
namic description works well even at very early times when the system
is far from equilibrium.

— Only a small fraction of the huge angular momentum carried by the
valence quarks is transmitted to the glasma. This contradicts the
picture of a rapidly rotating glasma but agrees with measurements of
the global polarization of lambdas, which is zero or almost zero at
RHIC and LHC energies [44, 45].

— The momentum broadening coefficient q̂ and collisional energy loss
dE/dx in the glasma are significantly bigger than those in the hy-
drodynamic phase of matter produced in heavy-ion collisions. This
indicates that the short-lived glasma state plays an important role in
jet quenching and should not be neglected.

We computed a variety of glasma characteristics, but the approach we
developed can be used to study other properties of glasma.

— We argued that the temporal evolution of glasma mimics hydrody-
namic behavior. It would be interesting to explore this further with a
study of other glasma characteristics.

— We mostly considered collisions of heavy nuclei for which our approach
is most reliable. There is a lot of interest in asymmetric collisions,
and collisions involving smaller systems which are known to reveal
some similarities with those of heavy nuclei, in particular concerning
collective phenomena. The approach we developed can be used to
study the dependence of different glasma properties on the sizes of the
colliding nuclei.
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— We found that the global angular momentum of the glasma system
transverse to the reaction plane is very small, which agrees with the
small or vanishing global polarization of lambdas measured at RHIC
and the LHC [44, 45]. However, there are interesting new experimental
results on the non-vanishing polarization of lambdas along the beam
direction [58, 58]. The glasma angular momentum in the beam direc-
tion is therefore of physical interest. This calculation is currently in
progress.

— We computed the two-point field correlators which determine the mo-
mentum broadening and collisional energy loss of a hard probe travers-
ing the glasma. Using the same method, one can derive the complete
collision terms of the Fokker–Planck equation. A numerical solution
of the equation can then be obtained.

Several aspects of our approach to study glasma dynamics could be im-
proved. Below, we list a few examples starting with the most ambitious.

— An important simplification of the CGC approach we used is the as-
sumption of boost invariance. It would be very desirable to go beyond
this simplification and include some of the effects of the longitudinal
dynamics. However, this is a difficult task that requires a modification
of the ansatz (2.7) that determines the structure of the gauge potential.

— We used the Glasma Graph Approximation to perform averaging over
the color configurations of the incoming nuclei. We found a way to
estimate the validity of the approximation, as discussed in Section 2.7.
However, a more accurate assessment would involve testing the stabil-
ity of our results when the approximation is relaxed, which could be
done using an approach like that in Refs. [27, 28, 30].

— The Fokker–Planck equation we used violates gauge invariance because
link operators of the form shown in equation (4.7) are not included in
the collision terms. In Section 4.3.6, we argued that numerically the
effect is not large because the expectation value of the link operator
is not much different from unity. The link operators can be included
using the machinery that we have developed to implement the proper
time expansion, at least at lower orders.

— Our description of colliding nuclei breaks down at their edges because
we use a gradient expansion to calculate correlation functions. Our cal-
culation of the energy-momentum tensor includes terms to the second
order in the gradient expansion, and the calculation of the momen-
tum broadening parameter includes the zeroth- and first-order terms
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only. Many of the quantities we calculated are largely insensitive to
higher-order corrections, but quantities that characterize transverse
anisotropy and glasma angular momentum depend much more strongly
on the gradient expansion. The inclusion of higher-order terms in the
gradient expansion is a straightforward task that will extend the region
of validity of our results.

This work was partially supported by the National Science Centre (NCN),
Poland under grant 2018/29/B/ST2/00646, and by the Natural Sciences and
Engineering Research Council of Canada under grant SAPIN-2017-00028.

Appendix A

Notation

Indices

Greek letters from the second half of the alphabet µ, ν, ρ, . . . label compo-
nents of four-vectors and letters from the first half of the alphabet α, β, γ, . . .
label components of spatial three-vectors denoted as x⃗. Components x, y of
three vectors which are transverse to the collision axis z are indexed with
Latin letters i, j, k, . . . . These transverse two vectors are denoted x⃗⊥. The
Latin letters from the beginning of the alphabet a, b, c, . . . label color com-
ponents of elements of the SU(Nc) gauge group in the adjoint representation.

Coordinates

We use Minkowski, light-cone, and Milne coordinates in different parts
of the calculation, and these coordinates are written (t, z, x⃗⊥), (x+, x−, x⃗⊥),
and (τ, η, x⃗⊥). We use the conventional definitions

x± ≡ t± z√
2

, (A.1)

τ ≡
√

t2 − z2 =
√
2x+x− , (A.2)

η ≡ 1

2
ln

(
x+

x−

)
. (A.3)

We define the relative and average transverse coordinates

r⃗ ≡ x⃗⊥ − y⃗⊥ and R⃗ ≡ 1

2
(y⃗⊥ + x⃗⊥) . (A.4)
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We will write unit vectors as r̂ ≡ r⃗/|r⃗ | = r⃗/r and R̂ ≡ R⃗/|R⃗| = R⃗/R and
use standard notation for derivatives such as

∂i
x ≡ − ∂

∂xi⊥
and ∂i

R ≡ − ∂

∂Ri
. (A.5)

In light-cone coordinates, we have

∂+ =
∂

∂x−
and ∂− =

∂

∂x+
. (A.6)

We note that the chain rule gives

−∂i
x =

∂

∂ri
+

1

2

∂

∂Ri
and − ∂i

y = − ∂

∂ri
+

1

2

∂

∂Ri
. (A.7)

The metric tensors in these three coordinate systems are

gMink = (1,−1,−1,−1)diag

and

glc =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 , gMilne =


1 0 0 0
0 −τ2 0 0
0 0 −1 0
0 0 0 −1

 .(A.8)

The coordinate transformations are xµMink = Mµ
ν xνlc with

Mµ
ν =

dxµMink

dxνlc
=


1√
2

1√
2

0 0
1√
2

− 1√
2

0 0

0 0 1 0
0 0 0 1

 , (A.9)

and xµMink = Mµ
ν xνMilne with

Mµ
ν =

dxµMink

dxνMilne

=


cosh η τ sinh η 0 0
sinh η τ cosh η 0 0
0 0 1 0
0 0 0 1

 . (A.10)

We define a four-dimensional gradient operator, where the transverse
components are derivatives with respect to the average coordinate R⃗ defined
in equation (A.4). We can transform this gradient operator from Milne to
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Minkowski coordinates by taking the inverse of the transpose of (A.10). This
gives

∂mink
µ =


cosh η ∂

∂τ − sinh η
τ

∂
∂η

− sinh η ∂
∂τ + cosh η

τ
∂
∂η

−∂1
R

−∂2
R

 . (A.11)

Gauge group

The generators ta of the fundamental representation of SU(Nc) group,
where a = 1, 2, . . . N2

c − 1, satisfy

[ta, tb] = ifabctc ,

Tr(tatb) =
1

2
δab ,

fabc = −2iTr (ta [tb, tc]) . (A.12)

Functions like Aµ, Jµ, and ρ are SU(Nc) valued and can be written as
linear combinations of the SU(Nc) generators. In the adjoint representation
we write the generators with a tilde as (t̃a)bc = −ifabc.

Covariant derivatives

In Minkowski coordinates, the covariant derivative is defined as Dµ ≡
∂µ − igAµ in the fundamental representation of the SU(Nc) gauge group.
In the adjoint representation, this becomes Dµab ≡ δab∂µ − gfabcAµ c. Co-
variant derivatives in Milne coordinates include both the gauge potential
contribution and connection terms. Products of covariant derivatives acting
on a scalar function ϕ are written as

∇ν ϕ = Dν ϕ ,

∇µ∇ν ϕ =
(
DµDν − Γ ρ

µνDρ

)
ϕ ,

∇ρ∇µ∇ν ϕ = (Dρ∇µ∇ν − Γ τ
ρµ∇τ∇ν − Γ τ

ρν∇µ∇τ )ϕ . (A.13)

The connection Γ ρ
µν can be calculated from the metric tensor (A.8) and one

easily shows that the only non-zero components are

Γ 0
11 = τ and Γ 1

01 = Γ 1
10 =

1

τ
. (A.14)
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Appendix B

Azimuthal distribution

We define here the azimuthal distribution of the flow vector T i0(x⃗⊥). The
azimuthal angle is measured with respect to the x-axis and is written as

φ(x⃗⊥) = tan−1

(
T 0y(x⃗⊥)

T 0x(x⃗⊥)

)
= cos−1

 T 0x(x⃗⊥)√
(T 0x(x⃗⊥))

2 + (T 0y(x⃗⊥))
2

 .

(B.1)
We define the distribution

P (ϕ) ≡ 1

Ω

∫
d2x⃗⊥ δ (ϕ− φ(x⃗⊥)) W (x⃗⊥) , (B.2)

where we have introduced the weighting function

W (x⃗⊥) ≡
√

(T 0x(x⃗⊥))
2 + (T 0y(x⃗⊥))

2 (B.3)

and the normalization factor

Ω ≡
∫

d2x⃗⊥W (x⃗⊥) . (B.4)

The distribution P (ϕ) can be decomposed into Fourier harmonics as

P (ϕ) =
1

2π

(
1 + 2

∞∑
n=1

vn cos(nϕ)

)
, (B.5)

where the coefficients vn are given by the relation

vn =

2π∫
0

dϕ cos(nϕ)P (ϕ) . (B.6)
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