
α clustering and flow in light-heavy systems or: throwing triangles against the wall

Wojciech Broniowski

Inst. of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce

WPCF 14 August 2014, Gyöngyös, Hungary

[research with Enrique Ruiz Arriola, Piotr Bożek, Maciej Rybczyński]

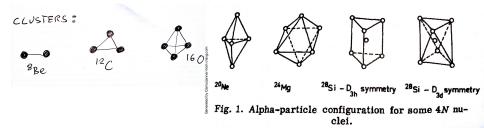
Instead of outline

Two phenomena are related:

 α clustering in light nuclei

harmonic flow in ultra-relativistic nuclear collisions

Surprising link:


lowest-energy ground-state structure \longleftrightarrow highest energy reactions

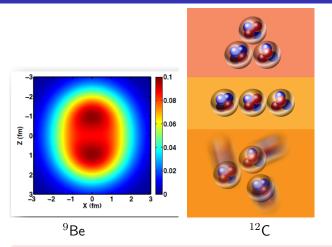
- New method of investigating many-particle nuclear correlations
- Another test of collective dynamics/harmonic flow

α clusters

Some history

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O … were composed of α -particles

Generated by CamScanner from intsig.com


Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963

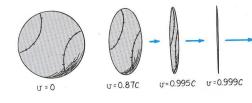
Michael P. Carpenter: However, in the 1960s, excited states in nuclei that comprise equal numbers of protons and neutrons, (e.g., 12 C and 16 O) were identified that could not be described by the shell model, and it was suggested by Ikeda and others that these states could be associated with configurations composed of α particles

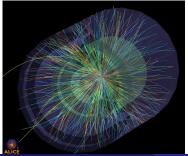
[Recent status: SOTANCP3 Conference, Yokohama, May 2014]

α clusters in light nuclei

ground

Hoyle 0^+

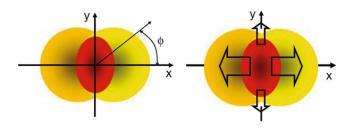

other excited, 2^+ ...


How can we detect the α clusters in the ground state? What is their spatial arrangement? Assessment of n-body correlations (one-body not enough)

Flow

Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

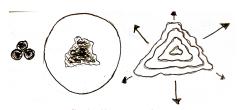
- Lorentz contraction
- Collision: essentially instantaneous passage, frozen configuration
- Reduction of the ground-state wave function of the nucleus (like measurement)



 detection of particles in the transverse direction (mid-rapidity)

Phenomenon of flow

Quark-gluon plasma is formed!

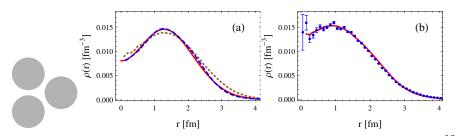


"Initial shape – final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles – follows from collectivity

Merge the two ideas (α 's and flow) \rightarrow

From α clusters to flow in relativistic collisions

 $\begin{array}{c} \alpha \text{ clusters} \to \text{asymmetry of shape} \to \text{asymmetry of initial fireball} \to \\ & \to \text{ hydro or transport} \to \text{collective harmonic flow} \end{array}$

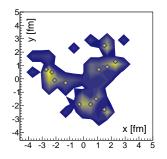

nuclear triangular geometry \rightarrow fireball triangular geometry \rightarrow triangular flow

What are the signatures, chances of detection? (some blurring by fluctuations) "Easy snap-shot but difficult development"

Related idea: triton/ 3 He-Au at RHIC [Sickles et al. (PHENIX) 2013] The case of 12 C is more promising, as it leads to more abundant fireballs.

Our modeling $^{12}\mathsf{C}^{1}$

Three α 's in a triangular arrangement, generate nucleon positions with Monte Carlo, parameters (size of the cluster, distance between clusters) properly adjusted \rightarrow two "extreme" cases

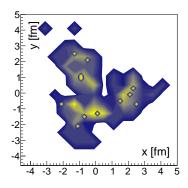

Distribution of centers of protons in ¹²C

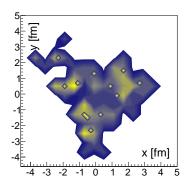
- (a) dashed: data from ff (after unfolding the proton ff) \equiv BEC, solid our BEC, dotted Jastrow (Buendia et al.)
- (b) points variational MC (Wiringa et al.), line our VMC

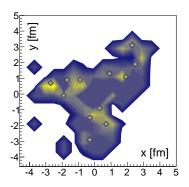
¹²C-²⁰⁸Pb – single event

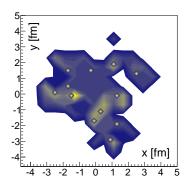
Why ultra-relativistic?

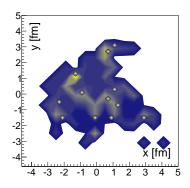
Reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

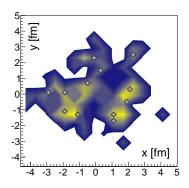


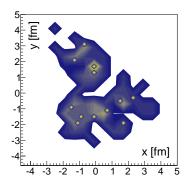

wounding range determined by $\sigma_{\mathrm{NN}}^{\mathrm{inel}}$

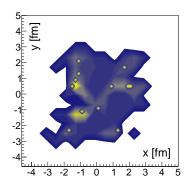

 $(N_w > 70$ - flat-on orientation)

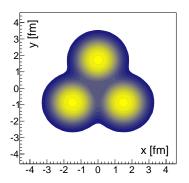

Imprints of the three α clusters clearly visible

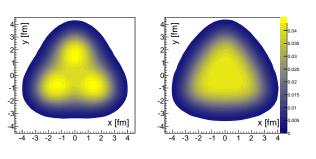

Simulations with GLISSANDO 2







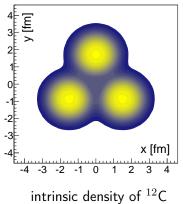


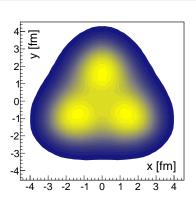


Our intrinsic distributions in $^{12}\mathrm{C}$: three lpha's in a triangular arrangement

12 C $^{-208}$ Pb collision

Intrinsic distributions in the transverse plane of the fireball (here with $N_w > 70$ – large multiplicity enforcing the flat-on collision)


clustered


unclustered

Some triangularity in the unclustered case follows from the fluctuations

Geometry of nucleus \rightarrow geometry of fireball

Triangular nucleus causes triangular "damage"!

geometry of the fireball

Eccentricity parameters

We need some quantitative measures of deformation (heavily used in heavy-ion analyses)

Eccentricity parameters ϵ_n (Fourier analysis)

$$\epsilon_n e^{in\Phi_n} = \frac{\sum_j \rho_j^n e^{in\phi_j}}{\sum_j \rho_j^n}$$

describe the shape of each event (j labels the sources in the event, n=rank, Φ_n is the principal axis angle)

$$n=2$$
 – ellipticity, $n=3$ – triangularity, . . .

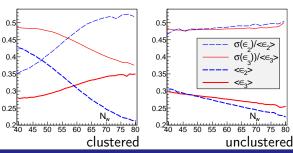
Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Geometry vs multiplicity correlations in ¹²C-Pb

Two cases of angular orientation

cluster plane parallel or perpendicular to the transverse plane:



higher multiplicity higher triangularity lower ellipticity lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

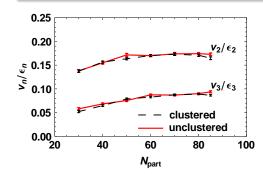
[WB & ERA, PRL 112 (2014) 112501]

Clusters: (qualitative signal!)

When $N_w \nearrow$ then $\langle \epsilon_3 \rangle \nearrow$ and $\langle \epsilon_2 \rangle \searrow$

and $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle \searrow$, $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle \nearrow$

No clusters:

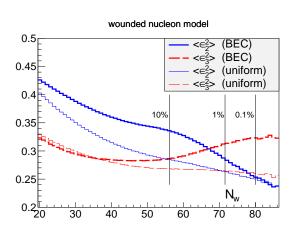

similar behavior for n=2 and n=3

WB (IFJ PAN & UJK)

Shape-flow transmutation

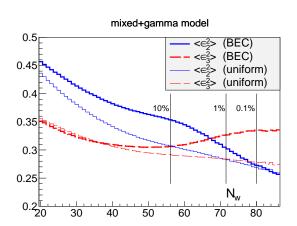
The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. Linear response:

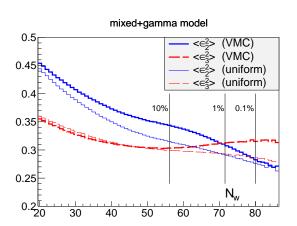
 v_n grows with ϵ_n

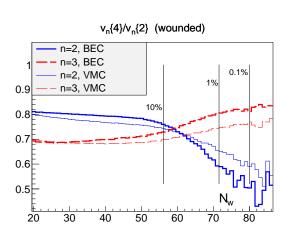

[Bożek 3+1 viscous hydro + THERMINATOR]

$$\epsilon_n \{2\}^2 = \langle \epsilon_n^2 \rangle, \ \epsilon_n \{4\}^4 = 2\langle \epsilon_n^2 \rangle - \langle \epsilon_n^4 \rangle$$

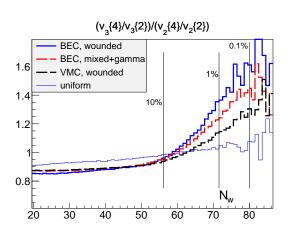
$$v_n \{m\} \sim \epsilon_n \{m\}, \ n = 2, 3, \ m = 2, 4, 6, \dots$$

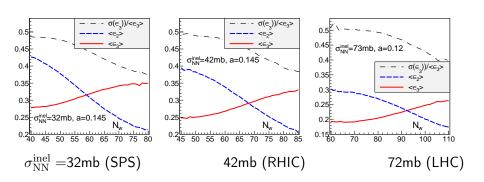


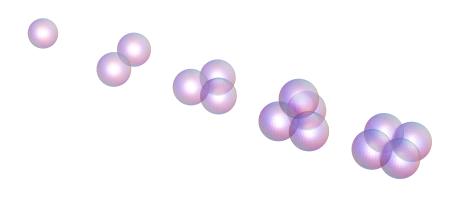




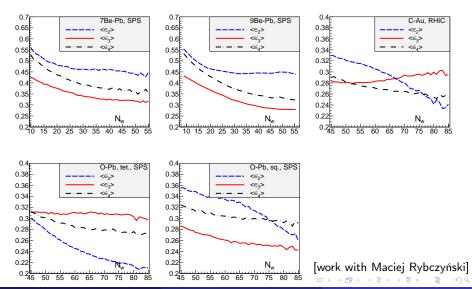
Ratios of cumulant moments




Ratios of cumulant moments



Dependence on the collision energy


Qualitative conclusions hold from SPS to the LHC

Other systems

Other systems

(distributions matched to Wiringa's et al. radial densities)

Conclusions

Nuclear structure from ultra-relativistic heavy ion collisions

Snapshots of the ground-state wave function Spatial correlations in the ground state \rightarrow harmonic flow Signatures in clustered $^{12}\text{C-}^{208}\text{Pb}$ collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Corresponding decrease of the scaled variance of triangularity
- Anticorrelation of ellipticity and triangularity
- Clear signals from cumulant moments for c < 10%
- ullet Stronger effect at lower $\sigma_{NN}^{\mathrm{inel}}$ (i.e., at lower collision energies)
- ullet Even stronger effect on the $^{12}{
 m C}$ side in rapidity
- Effect depends on the nuclear wave function

Possible data (NA61@SPS, RHIC) in conjunction with a detailed knowledge of the evolution of the fireball would allow to place constrains on the $\alpha\text{-cluster}$ structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions helps to verify the fireball evolution models

Back-up

Intrinsic distributions

Ground state of ^{12}C is a 0^+ state (rotationally symmetric wave function). The meaning of *deformation* concerns multiparticle correlations between the nucleons

Superposition over orientations:

$$|\Psi_{0+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi} \int d\Omega \Psi_{\rm intr}(x_1,\ldots,x_N;\Omega)$$

The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_n^{\rm intr}(\vec x) = \langle f(R(-\Phi_n)\vec x) \rangle$. Brackets indicate averaging over events and $R(-\Phi_n)$ is the inverse rotation by the principal-axis angle in each event