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free streaming + sudden equilibration (FS+SE)
• P. F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C62 (2000) 054909
... idealize the initial kinetic equilibration stage of the collision by a stage of
collisionless free-streaming followed by hydrodynamic expansion, thereby
assuming a sudden, but delayed transition from a non-equilibrium initial state
to a fully thermalized fluid ...
• W. Jas, St. Mrówczyński, Phys.Rev.C76 (2007) 044905
• Y. M. Sinyukov, Acta Phys. Polon. B37 (2006) 3343
• M. Gyulassy, Y. M. Sinyukov, I. Karpenko, A. V. Nazarenko,

Braz. J. Phys. 37 (2007) 1031 (similar ideas, azimuthal asymmetry of flow)
• WB, M. Chojnacki, W. Florkowski, A. Kisiel, arXiv:0801.4361v1 [nucl-th]
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Geometry and asymmetric flow

Consider a non-central collision. I has been generally thought that FS+SE,
which decreases spatial asymmetry, leads automatically to a reduction of the
elliptic flow. However ...
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Consider a non-central collision. I has been generally thought that FS+SE,
which decreases spatial asymmetry, leads automatically to a reduction of the
elliptic flow. However ...

FS+SE from a slab
yields to flow velocity
⊥ to the surface
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Geometry and asymmetric flow

Consider a non-central collision. I has been generally thought that FS+SE,
which decreases spatial asymmetry, leads automatically to a reduction of the
elliptic flow. However ...

FS+SE from a slab
yields to flow velocity
⊥ to the surface

FS+SE →
anisotropic flow
velocity of the fluid

Starting condition of hydro is azimuthally asymmetric!
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Kinematics

Initial density profile: n(x0, y0) = exp
(
− x2

0
2a2 − y2

0
2b2

)
(can be any)

Massless partons are formed at the proper time τ0 =
√

t20 − z2
0 ,

move along straight lines at the speed of light,
sudden equilibration occurs at τ =

√
t2 − z2

η0 =
1
2

log
t0 − z0

t0 + z0
, η =

1
2

log
t − z

t + z

Parton’s momentum: pμ = (pT chY, pT cos φ, pT sin φ, pT shY )
Elementary kinematics →

τsh(η − Y ) = τ0sh(η0 − Y )
x = x0 + Δ cos φ, y = y0 + Δ sin φ

Δ =
t − t0
chY

= τch(η − Y ) −
√

τ2
0 + τ2sh2(η − Y )
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The η � Y condition

The phase-space densities of partons at τ0 and τ are related:

d6N(τ)
dY d2pT dηdxdy

=
∫

dη0dx0dy0
d6N(τ0)

dY d2pT dη0dx0dy0
×

δ(η0 − Y − arcsh[
τ

τ0
sh(η − Y )])δ(x − x0 − Δ cosφ)δ(y − y0 − Δ sinφ)

Assume a factorized boost-invariant form (good at midrapidity):

d6N(τ0)
dY d2pT dη0dx0dy0

= n(x0, y0)F (Y − η0, pT )

If F is peaked near Y = η0, e.g. F ∼ exp[−(Y − η0)2/(2a2)] with
a ∼ 1, and if τ � τ0, then
F ∼ exp

(
−arcsh2

[
τ
τ0

sh(Y − η)
]
/(2σ2)

)
∼ δ(Y − η) and

d6N(τ)
dY d2pT dηdxdy

∼ δ(Y − η)
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Remark: δ(Y − η) follows from the kinematics at τ � τ0

It effectively works for τ ≥ τ0

a�1
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Transverse flow decreased somewhat by the spread in Y − η
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Tμν

Energy-momentum tensor from free streaming from τ0 to τ � τ0

at midrapidity:

T μν(x, y, η = 0) =
∫

dY d2pT
d6N(τ)

dY d2pT dηdxdy
pμpν

= A

∫ 2π

0

dφn0 [x − (τ − τ0) cosφ, y − (τ − τ0) sin φ] ×

×

⎛
⎜⎜⎝

1 cosφ sin φ 0
cosφ cos2 φ cosφ sin φ 0
sinφ cosφ sin φ sin2 φ 0

0 0 0 0

⎞
⎟⎟⎠ ,
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Landau matching

Tμνuν = εgμνuν - Landau matching (LM) condition

u = γ(1, 
v) - flow velocity

uμTμνuν = ε

In the rest frame (RF) of the fluid element u = (1, 0, 0, 0) and
ε = TRF

00

• LM is solved numerically

WB Initial conditions for hydro



Introduction
Details
Results

Conclusions

ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

FS from τ0 = 0.25 fm to τ = 1 fm
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Flow velocity steeper along the x axis (in-plane)
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Transverse hydro
Delayed hydro

Hubble flow
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ρ - transverse radius, solid: in-plane, dashed: out-of-plane

Hubble flow follows from the Gaussian profile at low ρ(τ − τ0), as

v ≡ (vx, vy, vz) = −τ − τ0

3
∇n(x, y)
n(x, y)

=
τ − τ0

3

( x

a2
,

y

b2
, 0

)
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

Tμν in the local rest frame

1. 0 0

0 0.49 0

0 0 0.51

1. 0 0

0 0.49 0

0 0 0.51

1. 0 0

0 0.49 0

0 0 0.51

1. 0 0

0 0.49 �0.0049
0 �0.0049 0.51

1. 0 0

0 0.49 0.0024

0 0.0024 0.51

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

x �fm�

y
�fm
�

Energy

Pass to the rest frame
of the fluid element
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Almost the “transverse
hydro” form⎛
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⎠

[see talks by
M. Chojnacki
and P. Bożek]
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

Tμν → ε

⎛
⎝ 1 0 0

0 1/2 0
0 0 1/2

⎞
⎠ - matching to transverse (ideal

boost-invariant) hydro (very close)
Larger deviation in Txx and Tyy than in Txy, as in viscous hydro

Tμν →

⎛
⎜⎜⎝

ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ - matching to 3-dim. isotropic hydro

(carried out here)
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Eccentricity and “v2”

εpart = 〈y〉2−〈x〉2
〈y〉2+〈x〉2 v2,part = 〈Txx〉−〈Tyy〉

〈Txx〉+〈Tyy〉

Τ0 Τmatch
Τ

v2,part

WB Initial conditions for hydro
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

Eccentricity and “v2”

εpart = 〈y〉2−〈x〉2
〈y〉2+〈x〉2 v2,part = 〈Txx〉−〈Tyy〉

〈Txx〉+〈Tyy〉

Τ0 Τmatch
Τ

v2,part

Εpart

v2,part � transverse

v2,part � isotropic
0.5 1.0 1.5 2.0
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0.30

Early v2 is generated by FS+SE

Decrease of spatial asymmetry compensated by asymmetric flow
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

Delayed hydro

Results with FS from τ0 = 0.25 fm up to τ ∼ 1 fm/c followed by
SE and hydro are virtually indistinguishable from those without FS,
i.e. with hydro started at τ0

→

WB Initial conditions for hydro
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

pT -spectra and v2 with and without FS
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Darker lines/bands – with FS to
τ = 1 fm
slightly larger flow
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ε and velocity profiles
Hubble flow
Transverse hydro
Delayed hydro

Pionic HBT radii with and without FS

Darker lines/bands – with FS

[see the talk by W. Florkowski]
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Conclusions

FS+SE mimics viscous hydro
allows to delay the start of hydrodynamics to realistic times
helps with the “early thermalization puzzle”
For non-central collisions the mechanism generates the initial
azimuthally asymmetric flow
For non-boost-invariant systems the longitudinal flow also
develops from FS+SE
Early transverse flow helps tremendously with the
phenomenology → a uniform description of the RHIC data
[WB, MCh, WF, AK, PRL 101 (2008) 022301, see talks by W.
Florkowski and S. Pratt - SP, J. Vredevoogd, arXiv:0809.0516]
Landau matching condition very smoothly joins FS to
transverse hydrodynamics
Possible scenario:
FS → SE → transverse hydro → isotropic hydro

WB Initial conditions for hydro
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Kinematics of FS

Τ

Τ0

�2 �1 0 1 2
z

0.5

1.0

1.5

2.0

t

z = z0 + (t − t0)thY
τshη = τ0shη0 + (τchη − τ0chη0)thY
τsh(η − Y ) = τ0sh(η0 − Y )

above →
t−t0
chY = τch(η0 −Y )−

√
τ2
0 + τ2sh2(η − Y )

WB Initial conditions for hydro
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Tμν in the boost-invariant model with δ(Y − η)

T μν(x, y, η) =
∫

dY d2pT
d6N(τ)

dY d2pTdηdxdy
pμpν

= A

∫ 2π

0
dφn (x − (τ − τ0) cos φ, y − (τ − τ0) sin φ) ×

⎛
⎜⎜⎝

cosh2η coshη cos φ coshη sin φ coshηsinhη
coshη cos φ cos2 φ cos φ sin φ cos φsinhη
coshη sin φ cos φ sin φ sin2 φ sin φsinhη

coshηsinhη cos φsinhη sin φsinhη sinh2η

⎞
⎟⎟⎠

WB Initial conditions for hydro
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