Lowest-energy nuclear structure from highest-energy nuclear collisions

Wojciech Broniowski

Institute of Physics, UJK

[more details in WB& E. Ruiz Arriola, arXiv:1312.0289, Phys. Rev. Lett. 112, 112501]

NEWS AND COMMENTARY IN PHYSICS

"An Untested Window into Nuclear Structure" http://journals.aps.org/prl/

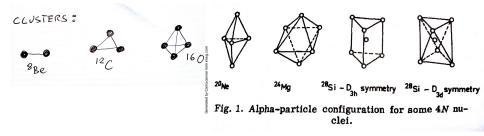
WB ((UJK

Instead of outline

(WPCF 2013 in Catania $\rightarrow \alpha$)

Two phenomena are related:

$\begin{array}{c} \alpha \text{ clustering in light nuclei} \\ \uparrow \\ \text{harmonic flow in ultra-relativistic A+B collisions} \end{array}$


Surprising link:

low-energy structure \longleftrightarrow highest energy reactions

WB	(UJ	K

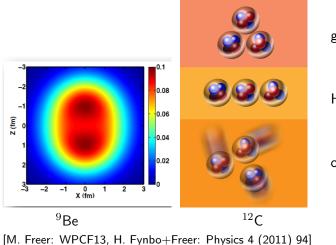
Some history

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O ... were composed of α -particles

Generated by CamScanner from intsig.com

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that comprise equal numbers of protons and neutrons, (e.g., ${}^{12}C$ and ${}^{16}O$) were identified that could not be described by the shell model, and it was suggested by Ikeda and others that these states could be associated with configurations composed of α particles

Also: problems with α decay of ²¹²Po shell model predicts a way too small decay width spectroscopy: ²¹²Po = ²⁰⁸Pb+ α [Astier et al. 2014]

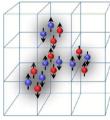

Evidence from dissociation in nuclear track emulsions [Zarubin 2013 (BECQUEREL)]

Example: dissociation of 7 Li (energy of a few A GeV)

channel	$ ^{4}$ He $+^{3}$ He	${}^{3}\mathrm{He}{+}^{3}\mathrm{He}$	4 He+2 p	$^4{\sf He}{+}d{+}p$	3 He $+2p$	3 He $+d+p$	3 He $+2d$	3 He $+t+p$	$_{3p+d}$	⁶ Li+p
N	30	11	13	10	9	8	1	1	2	9
%	31	12	14	11	10	9	1	1	2	10

Numerous ongoing experiments (GANIL, Osaka, ...)

Present theory status

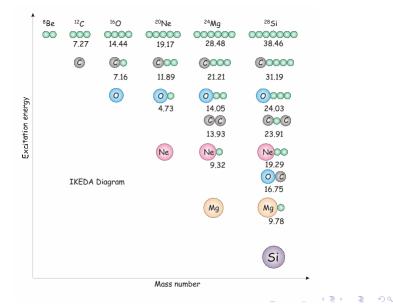


ground

Hoyle 0^+

other excited, 2^+ . . .

Ab initio calculations of ${}^{16}O$ with chiral NN force (Juelich 2014) \rightarrow strong α clusterization


(a) Initial state "A",8 equivalent orientations.

(b) Initial states "B" and "C", 3 equivalent orientations.

ground state

3 🕨 🖌 3

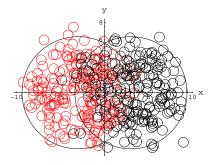
Ikeda diagram

WB (UJK)

UJK 2014 8 / 34

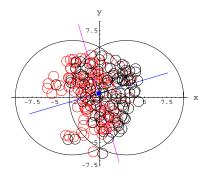
Funaki et al.: certain states in self-conjugated nuclei ... can be described as product states of α particles, all in the lowest 0S state. We define a state of condensed α particles in nuclei as a bosonic product state in good approximation, in which all bosons occupy the lowest quantum state of the corresponding bosonic mean-field potential (α BEC)

Another approach: Fermionic Molecular Dynamics (FMD)


A=2-12:

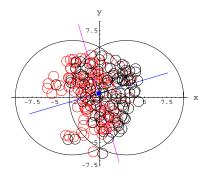
Quantum Variational Monte Carlo (with 2- and 3-body forces) [Robert Wiringa, http://www.phy.anl.gov/theory/research/density/]

All approaches give clusters


A+A collisions

 $\mathsf{Au}{+}\mathsf{Au}$ collision at RHIC

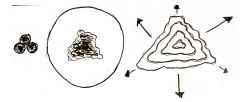
メロト メロト メヨト メ


Participants:

- initial fireball is asymmetric in the transverse plane from 1) geometry
 2) fluctuations
- collectivity! flow generated
- strong elliptic flow, triangular flow from fluctuations, higher-order flow

"Initial shape – final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles

Participants:

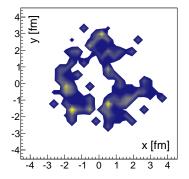

- initial fireball is asymmetric in the transverse plane from 1) geometry
 2) fluctuations
- collectivity! flow generated
- strong elliptic flow, triangular flow from fluctuations, higher-order flow

"Initial shape – final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles

Merge the two ideas (a's and flow) \rightarrow

From α clusters to flow in relativistic collisions

 $\begin{array}{l} \alpha \text{ clusters} \rightarrow \text{asymmetry of shape} \rightarrow \text{asymmetry of initial fireball} \rightarrow \\ \rightarrow \text{ hydro or transport} \rightarrow \text{collective harmonic flow} \end{array}$

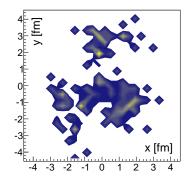

nuclear triangular geometry \rightarrow fireball triangular geometry \rightarrow triangular flow

What are the chances of detection?

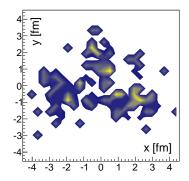
Related idea: triton/ 3 He–Au at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

WB (UJK)

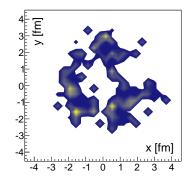
$^{12}\text{C}-^{208}\text{Pb}$ – single event

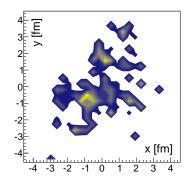


Imprints of the α clusters clearly visible

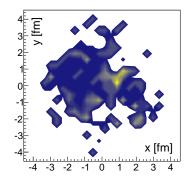

[simulations with GLISSANDO 2: GLauber Initial-State Simulation AND mOre..., M. Rybczyński, G. Stefanek, WB, P. Bożek]

WB (UJK)


UJK 2014 13 / 34


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



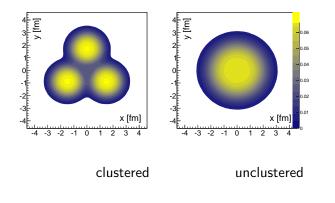
・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

◆ ■ ◆ ○ ○ ○
 UJK 2014 17 / 34

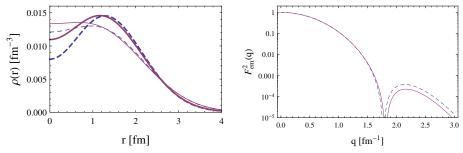
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ground-state nuclei are (mostly) in 0^+ states (rotationally symmetric wave functions). The meaning of *deformation* concerns multiparticle correlations between the nucleons

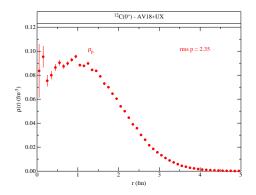

Superposition over orientations:

$$|\Psi_{0^+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi} \int d\Omega \Psi_{\text{intr}}(x_1,\ldots,x_N;\Omega)$$


(holds from deuterium to U)

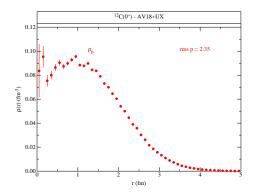
The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_n^{\text{intr}}(\vec{x}) = \langle f(R(-\Phi_n)\vec{x}) \rangle$. Brackets indicate averaging over events and $R(-\Phi_n)$ is the inverse rotation by the principal-axis angle in each event

Intrinsic distributions in $^{12}\mathrm{C:}$ 3 α 's in a triangular arrangement


Constraints from EM form factor

Electric charge density (thin lines) and the corresponding distribution of the centers of protons (thick lines) in ^{12}C for the data and BEC calculations (dashed lines), and for the FMD calculations (solid lines), plotted against the radius. **BEC agrees with the experimental data**

Central depletion


^{12}C from Wiringa

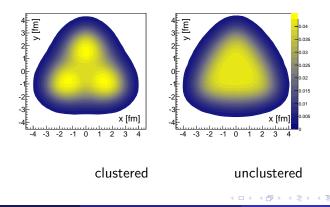
Distribution of the centers of protons = neutrons in $^{12}\mathrm{C}$

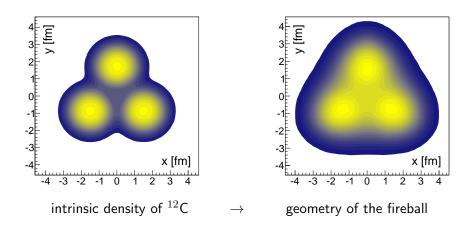
Central depletion

^{12}C from Wiringa

Distribution of the centers of protons = neutrons in ^{12}C

Central depletion


Have good distributions \rightarrow carry out detailed simulations


WB (UJK)	lpha clusters	UJK 2014 22 / 34
----------	---------------	------------------

¹²C–²⁰⁸Pb collision

Mixed Glauber model at SPS conditions: $n \sim \frac{1-a}{2}N_w + aN_{bin}$, a = 0.12

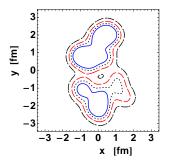
Intrinsic distributions in the transverse plane of the fireball with $N_w > 70$ – large multiplicity

24 / 34

Eccentricity parameters ϵ_n ,

$$\epsilon_n e^{in\Phi_n} = \frac{\sum_j \rho_j^n e^{in\phi_j}}{\sum_j \rho_j^n},$$

describe the shape of each event (j labels the sources in the event, n=rank, Φ_n is the principal axis angle)


Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Digression: d-Pb by Bożek

The deuteron has an intrinsic dumbbell shape with very large deformation: rms $\simeq 2~{\rm fm}$

Initial entropy density in a d-Pb collision with $N_{\text{part}} = 24$ [Bożek 2012]

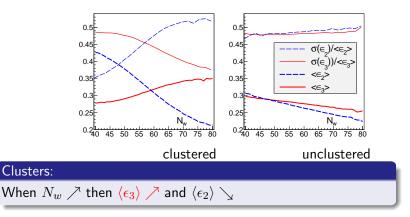
Resulting large elliptic flow confirmed with the later RHIC data

WB (UJK)

Geometry vs multiplicity correlations in ¹²C-Pb

A very specific feature of the $^{12}\mathrm{C}$ collisions:

The cluster plane parallel or perpendicular to the transverse plane:



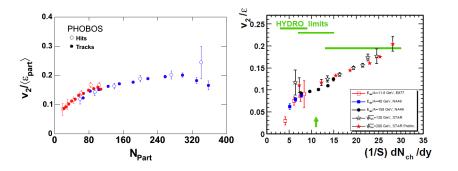
higher multiplicity higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

and $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle$, $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle$ / tending to $\sqrt{4/\pi - 1} \sim 0.52$

No clusters:

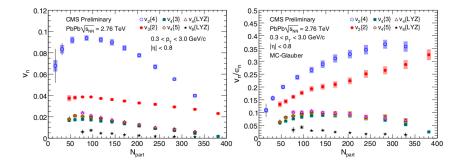

similar behavior for n = 2 and n = 3

WB (UJK)

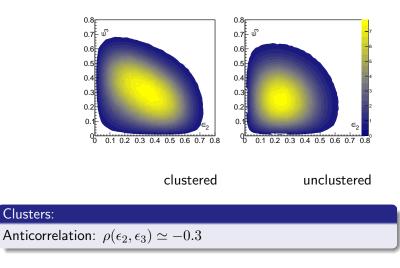
Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. It has been found that

$$\langle v_n \rangle \simeq A \langle \epsilon_n \rangle$$

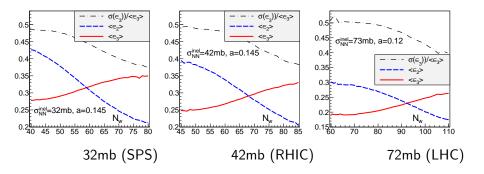


WB (UJK)


Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. It has been found that

$$\langle v_n \rangle \simeq A \langle \epsilon_n \rangle$$


Triangularity vs ellipticity

WB (UJK)

UJK 2014 31 / 34

Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

Why small on big?

small on big

small nucleus \rightarrow large deformation from clusters big nucleus \rightarrow large fireball, collectivity

small on small

more difficult evolution / particle production, other signatures if any

big on big

(U+U, Cu+Au) \rightarrow possible signatures of nuclear deformation (but not clustering) [Filip, Volshin 2010, Rybczyński, WB, Stefanek 2011]

ultra-relativistic collisions at central rapidities \rightarrow tested evolution codes exist

★ Ξ → < Ξ

New method: nuclear structure snapshots from ultra-fast heavy ion collisions / Geometry of the ground st. \rightarrow flow

Signatures (qualitative and quantitative) of clustered ¹²C-²⁰⁸Pb collisions

- Increase of ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Decrease of scaled variance ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Anticorrelation of ϵ_2 and ϵ_3 , or v_2 and v_3

Extensions

- Other systems and other possible signatures (work in progress at UJK)
- More detailed modeling (involving hydrodynamics)

Possible future data (NA61, RHIC?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α -cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models

WB (UJK)