α clusters from hydrodynamic flow

Wojciech Broniowski

Inst. of Nuclear Physics, Cracow, and Jan Kochanowski U., Kielce, Poland

UJ, 9.06.2014
[research with Enrique Ruiz Arriola, arXiv:1312.0289, PRL 112 (2014) 112501]

Instead of outline

Two phenomena are related:

α clustering in light nuclei
\downarrow
harmonic flow in ultra-relativistic nuclear collisions

Surprising link:

lowest-energy ground-state structure \longleftrightarrow highest energy reactions

α clusters

α clusters expected in light nuclei

How can we detect the α clusters in the ground state?
What is their spatial arrangement?
Assessment of n-body correlations (one-body not enough)

Flow

Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

- Lorentz contraction
- Collision: essentially instantaneous passage, frozen configuration
- Reduction of the ground-state wave function of the nucleus (like measurement)

- detection of particles (mostly pions) in the transverse direction (mid-rapidity)

Soft ($p_{T}<2 \mathrm{GeV}$) particle production

Glauber-Czyż-Maximon model - particle production from independent NN collisions (wounded nucleon model of Białas, Błeszyński, and Czyż)

$\mathrm{Au}+\mathrm{Au}$ collision at RHIC

Soft ($p_{T}<2 \mathrm{GeV}$) particle production

Glauber-Czyż-Maximon model - particle production from independent NN collisions (wounded nucleon model)

$\mathrm{Au}+\mathrm{Au}$ collision at RHIC

- QCD partons produced in the initial phase \rightarrow sQGP

Subsequent phases:

- expansion
- freezeout
- hadrons (mostly pions) streaming to detectors

Phenomenon of flow

Quark-gluon plasma is formed!

"Initial shape - final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles - follows from collectivity

Elliptic flow

$$
d N / d \phi=A\left(1+2 \sum_{n} v_{n} \cos \left[n\left(\phi-\Psi_{n}\right)\right]\right)
$$

[ALICE]

Major observation in HIC - signature of QGP

[ALICE]

Harmonic flow

Wounded nucleons experienced at least one inelastic collision

- Initial fireball is asymmetric in the transverse plane from

1) geometry 2) fluctuations

- collectivity! - flow generated
- Strong elliptic flow, triangular flow (in Au+Au entirely from fluctuations), higher-order harmonic flow

Merge the two ideas (α 's and flow) \rightarrow

From α clusters to flow in relativistic collisions

α clusters \rightarrow asymmetry of shape \rightarrow asymmetry of initial fireball \rightarrow
\rightarrow hydro or transport \rightarrow collective harmonic flow
(${ }^{12} \mathrm{C}$ as example)

nuclear triangular geometry \rightarrow fireball triangular geometry \rightarrow triangular flow
What are the signatures, chances of detection? (some blurring by fluctuations)

Related idea: triton $/{ }^{3} \mathrm{He}-\mathrm{Au}$ at RHIC in 2015
The case of ${ }^{12} \mathrm{C}$ is more promising, as it leads to more abundant fireballs

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ - single event

Why ultrarelativistic?

Reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

wounding range determined by $\sigma_{\mathrm{NN}}^{\text {inel }}$
($N_{w}>70$ - flat-on orientation)

Imprints of the three α clusters clearly visible
Simulations with GLISSANDO 2 - implementation of the Glauber model

Intrinsic distributions

Ground state of ${ }^{12} \mathrm{C}$ is a 0^{+}state (rotationally symmetric wave function). The meaning of deformation concerns multiparticle correlations between the nucleons

Superposition over orientations:

$$
\left|\Psi_{0^{+}}\left(x_{1}, \ldots, x_{N}\right)\right\rangle=\frac{1}{4 \pi} \int d \Omega \Psi_{\mathrm{intr}}\left(x_{1}, \ldots, x_{N} ; \Omega\right)
$$

The intrinsic density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_{n}^{\text {intr }}(\vec{x})=\left\langle f\left(R\left(-\Phi_{n}\right) \vec{x}\right)\right\rangle$. Brackets indicate averaging over events and $R\left(-\Phi_{n}\right)$ is the inverse rotation by the principal-axis angle in each event

Our poor-man's ${ }^{12} \mathrm{C}$

[Could use actual distributions from theoretical calculations]
Three α 's in a triangular arrangement, generate nucleon positions with Monte Carlo, parameters (size of the cluster, distance between clusters) chosen such that the EM form factor is reproduced

Electric charge density (dashed line) and the corresponding distribution of the centers of protons (solid line) in ${ }^{12} \mathrm{C}$ for the data (i.e., after unfolding the proton charge form factor), plotted against the radius

Our intrinsic distributions in ${ }^{12} \mathrm{C}$: three α 's in a triangular arrangement

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ collision

Intrinsic distributions in the transverse plane of the fireball (here with $N_{w}>70$ - large multiplicity enforcing the flat-on collision)

Some triangularity in the unclustered case follows from the fluctuations

Geometry of nucleus \rightarrow geometry of fireball

Triangular nucleus causes triangular "damage"!

intrinsic density of ${ }^{12} \mathrm{C}$

geometry of the fireball

Eccentricity parameters

We need some quantitative measures of deformation (heavily used in heavy-ion analyses)

Eccentricity parameters ϵ_{n} (Fourier analysis)

$$
\epsilon_{n} e^{i n \Phi_{n}}=\frac{\sum_{j} \rho_{j}^{n} e^{i n \phi_{j}}}{\sum_{j} \rho_{j}^{n}}
$$

describe the shape of each event (j labels the sources in the event, $n=$ rank, Φ_{n} is the principal axis angle)
$n=2$ - ellipticity, $n=3$ - triangularity, \ldots
Two components:

- internal (from existent mean deformation of the fireball)
- from fluctuations

Geometry vs multiplicity correlations in ${ }^{12} \mathrm{C}-\mathrm{Pb}$

Specific feature of the ${ }^{12} \mathrm{C}$ collisions:

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

Clusters: (qualitative signal!)
When $N_{w} \nearrow$ then $\left\langle\epsilon_{3}\right\rangle \nearrow$ and $\left\langle\epsilon_{2}\right\rangle \searrow$
and $\left\langle\sigma\left(\epsilon_{3}\right) / \epsilon_{3}\right\rangle \searrow,\left\langle\sigma\left(\epsilon_{2}\right) / \epsilon_{2}\right\rangle \nearrow$

No clusters:

similar behavior for $n=2$ and $n=3$

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow It has been found that
$\left\langle v_{n}\right\rangle$ grows with $\left\langle\epsilon_{n}\right\rangle$

\rightarrow for ${ }^{12} \mathrm{C}$ collisions v_{3} will grow with multiplicity even stronger than ϵ_{3} [detailed modeling of v_{3} under way, research with Piotr Bożek]

Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

Other systems

Other systems (distributions matched to Wiringa's et al. radial densities)

[work with Maciej Rybczyński]

Conclusions

Nuclear structure from ultra-fast heavy ion collisions

Snapshots of the ground-state wave function
Spatial deformation of the ground state \rightarrow harmonic flow
Signatures (qualitative and quantitative) of clustered ${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Corresponding decrease of the scaled variance of triangularity
- Anticorrelation of ellipticity and triangularity

Extensions

- Other systems (e.g., in ${ }^{7,9}$ Be growth of v_{2} with multiplicity)
- More detailed modeling involving event-by-even hydrodynamics (in-progress) needed

Possible data (NA61@SPS, RHIC) in conjunction with a detailed knowledge of the evolution of the fireball would allow to place constrains on the α-cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions helps to verify the fireball evolution

