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Collectivity in small and medium systems

Main questions:
What is the nature of the initial state and correlations therein?
What are the limits/conditions on applicability of hydrodynamics?

What is the ground state of light nuclei?

Other analyses of collectivity in small systems:

Romatschke, Luzum, arXiv:0901.4588, Prasad et al., arXiv:0910.4844,
Bozek, arXiv:0911.2393, Werner et al., arXiv:1010.0400,
Deng, Xu, Greiner, arXiv:1112.0470, Yan et al., arXiv: 0912.3342,
Bozek, arXiv:1112.0912 Shuryak, Zahed, arXiv:1301.4470,
Bzdak et al.,arXiv:1304.3403, Qin, Müller, arXiv:1306.3439,
Werner et al., arXiv:1307.4379
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Method
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Flow develops
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3-stage approach

Our three-phase approach (“Standard Model of heavy-ion collisions”):

initial → hydro → statistical hadronization

(successful in description of A+A collisions)

Initial phase - Glauber model GLISSANDO
Hydrodynamics - 3+1 D viscous event-by-event
Statistical hadronization - THERMINATOR
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Hydrodynamics [Bożek 2011]

3+1 D viscous Israel-Stewart event-by-event hydrodynamics (viscous
corrections essential due to large gradients)

τinit = 0.6 fm/c, η/s = 0.08 (shear), ζ/s = 0.04 (bulk)
Gaussian smearing of the sources, r = 0.4 fm – physical effect
average initial temperature in the center of the fireball adjusted to fit the
multiplicity
realistic equation of state (lattice + hadron gas [based on Chojnacki,
Florkowski 2007])

freezeout at Tf = 150 MeV

lattice spacing of 0.15 fm (thousands of CPU hours for one
reaction)
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Highlights of p-Pb
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Size in p-Pb vs Pb-Pb

fixed Npart = 19

p+Pb compact

p+Pb standard

Pb+Pb
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smaller size in p-Pb → larger entropy density → more rapid expansion
standard - source positioned at the center of the nucleons
compact - source at the CM of the colliding pair

[see also Bzdak, Schenke, Tribedy, Venugopalan, arXiv:1304.3403]
All in all, initial conditions in most central p-Pb not very far from those in
peripheral Pb-Pb
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Typical evolution in p-Pb

standard compact

pPb 5020GeV Npart=19
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isotherms at freeze-out Tf = 150 MeV for two sections in the transverse plane

evolution lasts about 4 fm/c - shorter but more rapid than in A+A
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Ridge in p-Pb, ATLAS
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Projection on 2 ≤ |∆η| ≤ 5, ATLAS

Y (∆φ) =

∫
B(∆φ)d(∆φ)

N
C(∆φ) − bZYAM

The near-side ridge from our model:
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[CGC: Dusling, Venugopalan, arXiv:1210.3890, 1211.3701, 1302.7018]
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v2, v3 vs CMS
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v3 somewhat too large for lower-multiplicity collisions
→ limit of validity of the model
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LHC: v2 vs ATLAS
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(NB – additional fluctuations of the strength of the sources, adjusted in such a
way that the experimental multiplicity distribution is reproduced)
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v2, v3 vs pT
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Identified 〈pT 〉
[Bożek, WB, Torrieri, PRL 111 (2013) 172303]
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Identified v2 and v3
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α clusters
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Some history

David Brink: After Gamow’s theory of α-decay it was natural to investigate
a model in which nuclei are composed of α-particles. Gamow developed a
rather detailed theory of properties in his book "Constitution of Nuclei"
published in 1931 before the discovery of the neutron in 1932. He supposed
that 4n-nuclei like 8Be, 12C, 16O ... were composed of α-particles
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Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that
comprise equal numbers of protons and neutrons, (e.g., 12C and 16O) were
identified that could not be described by the shell model, and it was
suggested by Ikeda and others that these states could be associated with
configurations composed of α particles
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Present theory status

9Be 12C
[M. Freer: WPCF13, H. Fynbo+Freer: Physics 4 (2011) 94]

ground

Hoyle 0+

other excited, 2+ . . .
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16O

Ab initio calculations of 16O with chiral NN force (Juelich 2014)
→ strong α clusterization

ground state excited
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Computational techniques

(massive effort)

Funaki et al.: certain states in self-conjugated nuclei ... can be described as
product states of α particles, all in the lowest 0S state. We define a state
of condensed α particles in nuclei as a bosonic product state in good
approximation, in which all bosons occupy the lowest quantum state of the
corresponding bosonic mean-field potential (αBEC)

Another approach: Fermionic Molecular Dynamics (FMD)

Quantum Variational Monte Carlo (with 2- and 3-body forces) for A=2-12
[R. Wiringa et al., http://www.phy.anl.gov/theory/research/density/]

All approaches to light nuclei give clusters

Goal (not yet accurately reached):
reproduce ground-state energy, excitation spectrum, EM form factor, ...
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Merge the two ideas: α’s and flow
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From α clusters to flow in relativistic collisions

[WB, Ruiz Arriola, PRL 112 (2014) 112501]

α clusters → asymmetry of shape → asymmetry of initial fireball →
→ hydro or transport → collective harmonic flow

Generated by CamScanner from intsig.com

nuclear triangular geometry → fireball triangular geometry → triangular flow

What are the signatures, chances of detection?

Related idea: triton/3He–Au at RHIC in 2015 [Sickles (PHENIX) 2013]
The case of light nuclei is more promising, as it leads to abundant fireballs
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12C-208Pb – single event

why ultrarelativistic?
reaction time is much shorter than time scales of the structure
→ a frozen “snapshot” of the nuclear configuration
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Imprints of the three α clusters clearly visible

[simulations with GLISSANDO 2]
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... more events
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... more events
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... more events
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... more events
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... more events
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... more events
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... more events
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... more events
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The meaning of intrinsic

Ground state of 12C is a 0+ state (rotationally symmetric wave function).
The meaning of deformation concerns multiparticle correlations between
the nucleons

Superposition over orientations:

|Ψ0+(x1, . . . , xN )〉 =
1

4π

∫
dΩΨintr(x1, . . . , xN ; Ω)

The intrinsic density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned principal axes:
f intr
n (~x) = 〈f(R(−Φn)~x)〉. Brackets indicate averaging over events and
R(−Φn) is the inverse rotation by the principal-axis angle in each event
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Back to 12C – intrinsic density

Intrinsic distributions in 12C: three α’s in a triangular arrangement
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Constraints on 12C from EM form factor
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Electric charge density (dashed line) and the corresponding distribution of
the centers of protons (solid line) in 12C for the data plotted against the
radius, for the BEC calculation – agrees with the experimental data for the
charge form factor

Central depletion naturally explained with the hole between the clusters
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12C from Wiringa’s MC
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GLISSANDO implements these clustered distributions
→ carry out detailed simulations
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12C from Wiringa’s MC
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12C–208Pb collision

Intrinsic distributions in the transverse plane of the fireball (here with
Nw > 70 – large multiplicity enforcing the flat-on collision)
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Geometry of nucleus → geometry of fireball
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Eccentricity parameters

Eccentricity parameters εn (Fourier analysis)

εne
inΦn =

∑
j ρ

n
j e
inφj∑

j ρ
n
j

describe the shape of each event (j labels the sources in the event,
n=rank, Φn is the principal axis angle)

Two components:

internal (from existent mean deformation of the fireball)
from fluctuations
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Digression: d-A by Bożek

The deuteron has an intrinsic dumbbell shape with very large deformation:
rms ' 2 fm

Initial entropy density in a d-Pb collision with Npart = 24 [Bożek 2012]
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Resulting large elliptic flow confirmed with the later RHIC analysis
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Geometry vs multiplicity correlations in 12C-Pb

Specific feature of the 12C collisions:

Generated by CamScanner from intsig.com

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity lower multiplicity
higher triangularity lower triangularity
lower ellipticity higher ellipticity
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Ellipticity and triangularity vs multiplicity
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similar behavior for n = 2 and n = 3
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Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on
collective dynamics) into asymmetry of the transverse-momentum flow
It has been found that

〈vn〉 grows with 〈εn〉

→ for 12C collisions v3 should grow with multiplicity even stronger than ε3

WB (UJK, IFJ PAN) hydro for light and medium ECT* 2014 44 / 51



Triangularity vs ellipticity
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Dependence on the collision energy
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Qualitative conclusions hold from SPS to the LHC
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Other systems
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Other systems (Wiringa’s distributions)
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[work with Maciej Rybczyński]
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Conclusions
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Is there collectivity in p-Pb?

Collective dynamics is compatible with the high-multiplicity soft LHC data
for p-Pb

Large v2 and v3 coefficients measured in p-Pb reasonably reproduced,
including the pT dependence
Model 2D correlations exhibit the two ridges, in particular the
near-side ridge
Mass ordering in 〈pT 〉 and flow coefficients reproduced

Numerous effects should still be incorporated (jets, core-corona, ...)
– more important for the lower-multiplicity events
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α clusters

Clustered geometry of the ground state → harmonic flow

Best signatures of 12C-208Pb collisions
Increase of triangularity with multiplicity for the highest multiplicity
events
Decrease of scaled variance of triangularity with multiplicity for the
highest multiplicity events
Anticorrelation of ellipticity and triangularity

Extensions (in progress)
Other systems, more detailed modeling involving e-by-e hydro

Possible future data (NA61, RHIC?) in conjunction with a detailed
knowledge of the dynamics of the evolution of the fireball would allow to
place constrains on the α-cluster structure of the colliding nuclei.
Conversely, the knowledge of the clustered nuclear distributions may help
to verify the fireball evolution models
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