Hydrodynamics in small and medium systems

Wojciech Broniowski

Jan Kochanowski U., Kielce and Inst. of Nucl. Phys. PAN, Cracow
Hydrodynamics of Strongly Coupled Fluids, ECT*, 11-16 May 2014

1. p-Pb (research with P. Bożek)
2. α-clustered nucleus-A (research with E. Ruiz Arriola and M. Rybczyński)

Collectivity in small and medium systems

Main questions:

What is the nature of the initial state and correlations therein? What are the limits/conditions on applicability of hydrodynamics?

What is the ground state of light nuclei?

Other analyses of collectivity in small systems:
Romatschke, Luzum, arXiv:0901.4588, Prasad et al., arXiv:0910.4844,
Bozek, arXiv:0911.2393, Werner et al., arXiv:1010.0400, Deng, Xu, Greiner, arXiv:1112.0470, Yan et al., arXiv: 0912.3342, Bozek, arXiv:1112.0912 Shuryak, Zahed, arXiv:1301.4470, Bzdak et al.,arXiv:1304.3403, Qin, Müller, arXiv:1306.3439, Werner et al., arXiv:1307.4379

Method

Flow develops

3-stage approach

Our three-phase approach ("Standard Model of heavy-ion collisions"): initial \rightarrow hydro \rightarrow statistical hadronization
(successful in description of $A+A$ collisions)

- Initial phase - Glauber model GLISSANDO
- Hydrodynamics - 3+1 D viscous event-by-event
- Statistical hadronization - THERMINATOR

Hydrodynamics [Bożek 2011]

$3+1$ D viscous Israel-Stewart event-by-event hydrodynamics (viscous corrections essential due to large gradients)

- $\tau_{\text {init }}=0.6 \mathrm{fm} / \mathrm{c}, \eta / s=0.08$ (shear), $\zeta / s=0.04$ (bulk)
- Gaussian smearing of the sources, $r=0.4 \mathrm{fm}$ - physical effect
- average initial temperature in the center of the fireball adjusted to fit the multiplicity
- realistic equation of state (lattice + hadron gas [based on Chojnacki, Florkowski 2007])
- freezeout at $T_{f}=150 \mathrm{MeV}$
- lattice spacing of 0.15 fm (thousands of CPU hours for one reaction)

Highlights of p-Pb

Size in $\mathrm{p}-\mathrm{Pb}$ vs $\mathrm{Pb}-\mathrm{Pb}$

fixed $N_{\text {part }}=19$

smaller size in $\mathrm{p}-\mathrm{Pb} \rightarrow$ larger entropy density \rightarrow more rapid expansion standard - source positioned at the center of the nucleons compact - source at the CM of the colliding pair
[see also Bzdak, Schenke, Tribedy, Venugopalan, arXiv:1304.3403] All in all, initial conditions in most central p-Pb not very far from those in peripheral $\mathrm{Pb}-\mathrm{Pb}$

Typical evolution in p-Pb

standard

compact

isotherms at freeze-out $T_{f}=150 \mathrm{MeV}$ for two sections in the transverse plane evolution lasts about $4 \mathrm{fm} / \mathrm{c}$ - shorter but more rapid than in $A+A$

Ridge in $\mathrm{p}-\mathrm{Pb}$, ATLAS

Projection on $2 \leq|\Delta \eta| \leq 5$, ATLAS

$$
Y(\Delta \phi)=\frac{\int B(\Delta \phi) d(\Delta \phi)}{N} C(\Delta \phi)-b_{\mathrm{ZYAM}}
$$

The near-side ridge from our model:

red - standard, blue - compact
[CGC: Dusling, Venugopalan, arXiv:1210.3890, 1211.3701, 1302.7018]

v_{2}, v_{3} vs CMS

v_{3} somewhat too large for lower-multiplicity collisions
\rightarrow limit of validity of the model

LHC: v_{2} vs ATLAS

(NB - additional fluctuations of the strength of the sources, adjusted in such a way that the experimental multiplicity distribution is reproduced)

v_{2}, v_{3} VS p_{T}

Identified $\left\langle p_{T}\right\rangle$

[Bożek, WB, Torrieri, PRL 111 (2013) 172303]

Identified v_{2} and v_{3}

Resonance decays affect the mass ordering in v_{3}

α clusters

Some history

David Brink: After Gamow's theory of α-decay it was natural to investigate a model in which nuclei are composed of α-particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that $4 n$-nuclei like ${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O} \ldots$ were composed of α-particles

Fig. 1. Alpha-particle configuration for some $4 N$ nuclei.

Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963
Michael P. Carpenter: However, in the 1960s, excited states in nuclei that comprise equal numbers of protons and neutrons, (e.g., ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$) were identified that could not be described by the shell model, and it was suggested by lkeda and others that these states could be associated with configurations composed of α particles

Present theory status

ground

Hoyle 0^{+}
other excited, $2^{+} \ldots$
[M. Freer: WPCF13, H. Fynbo+Freer: Physics 4 (2011) 94]

Ab initio calculations of ${ }^{16} \mathrm{O}$ with chiral NN force (Juelich 2014) \rightarrow strong α clusterization

(a) Initial state " A ", 8 equivalent orientations.
ground state

(b) Initial states " B " and " C ", 3 equivalent orientations.

Computational techniques

(massive effort)

Funaki et al.: certain states in self-conjugated nuclei ... can be described as product states of α particles, all in the lowest $0 S$ state. We define a state of condensed α particles in nuclei as a bosonic product state in good approximation, in which all bosons occupy the lowest quantum state of the corresponding bosonic mean-field potential ($\alpha \mathrm{BEC}$)

Another approach: Fermionic Molecular Dynamics (FMD)
Quantum Variational Monte Carlo (with 2- and 3-body forces) for $A=2-12$ [R. Wiringa et al., http://www.phy.anl.gov/theory/research/density/]

All approaches to light nuclei give clusters

Goal (not yet accurately reached):

reproduce ground-state energy, excitation spectrum, EM form factor, ...

Merge the two ideas: α 's and flow

From α clusters to flow in relativistic collisions

$$
\text { [WB, Ruiz Arriola, PRL } 112 \text { (2014) 112501] }
$$

α clusters \rightarrow asymmetry of shape \rightarrow asymmetry of initial fireball \rightarrow \rightarrow hydro or transport \rightarrow collective harmonic flow

nuclear triangular geometry \rightarrow fireball triangular geometry \rightarrow triangular flow
What are the signatures, chances of detection?
Related idea: triton $/{ }^{3} \mathrm{He}-\mathrm{Au}$ at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ - single event

why ultrarelativistic?

reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

$$
\text { (} N_{w}>70 \text { - flat-on orientation) }
$$

Imprints of the three α clusters clearly visible
[simulations with GLISSANDO 2]

The meaning of intrinsic

Ground state of ${ }^{12} \mathrm{C}$ is a 0^{+}state (rotationally symmetric wave function). The meaning of deformation concerns multiparticle correlations between the nucleons

Superposition over orientations:

$$
\left|\Psi_{0^{+}}\left(x_{1}, \ldots, x_{N}\right)\right\rangle=\frac{1}{4 \pi} \int d \Omega \Psi_{\mathrm{intr}}\left(x_{1}, \ldots, x_{N} ; \Omega\right)
$$

The intrinsic density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_{n}^{\text {intr }}(\vec{x})=\left\langle f\left(R\left(-\Phi_{n}\right) \vec{x}\right)\right\rangle$. Brackets indicate averaging over events and $R\left(-\Phi_{n}\right)$ is the inverse rotation by the principal-axis angle in each event

Back to ${ }^{12} \mathrm{C}$ - intrinsic density

Intrinsic distributions in ${ }^{12} \mathrm{C}$: three α 's in a triangular arrangement

clustered

unclustered

Constraints on ${ }^{12} \mathrm{C}$ from EM form factor

Electric charge density (dashed line) and the corresponding distribution of the centers of protons (solid line) in ${ }^{12} \mathrm{C}$ for the data plotted against the radius, for the BEC calculation - agrees with the experimental data for the charge form factor

Central depletion naturally explained with the hole between the clusters

${ }^{12} \mathrm{C}$ from Wiringa's MC

Distribution of the centers of protons $=$ neutrons in ${ }^{12} \mathrm{C}$ smaller central depletion

${ }^{12} \mathrm{C}$ from Wiringa's MC

Distribution of the centers of protons $=$ neutrons in ${ }^{12} \mathrm{C}$ smaller central depletion

GLISSANDO implements these clustered distributions \rightarrow carry out detailed simulations

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ collision

Intrinsic distributions in the transverse plane of the fireball (here with $N_{w}>70$ - large multiplicity enforcing the flat-on collision)

clustered

unclustered

Geometry of nucleus \rightarrow geometry of fireball

intrinsic density of ${ }^{12} \mathrm{C}$

$\rightarrow \quad$ geometry of the fireball

Eccentricity parameters

Eccentricity parameters ϵ_{n} (Fourier analysis)

$$
\epsilon_{n} e^{i n \Phi_{n}}=\frac{\sum_{j} \rho_{j}^{n} e^{i n \phi_{j}}}{\sum_{j} \rho_{j}^{n}}
$$

describe the shape of each event (j labels the sources in the event, $n=$ rank, Φ_{n} is the principal axis angle)

Two components:

- internal (from existent mean deformation of the fireball)
- from fluctuations

Digression: d-A by Bożek

The deuteron has an intrinsic dumbbell shape with very large deformation: $\mathrm{rms} \simeq 2 \mathrm{fm}$

Initial entropy density in a d-Pb collision with $N_{\text {part }}=24$ [Bożek 2012]

Resulting large elliptic flow confirmed with the later RHIC analysis

Geometry vs multiplicity correlations in ${ }^{12} \mathrm{C}-\mathrm{Pb}$

Specific feature of the ${ }^{12} \mathrm{C}$ collisions:

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

Clusters:

When $N_{w} \nearrow$ then $\left\langle\epsilon_{3}\right\rangle \nearrow$ and $\left\langle\epsilon_{2}\right\rangle \searrow$

$$
\text { and }\left\langle\sigma\left(\epsilon_{3}\right) / \epsilon_{3}\right\rangle \searrow,\left\langle\sigma\left(\epsilon_{2}\right) / \epsilon_{2}\right\rangle \nearrow \text { tending to } \sqrt{4 / \pi-1} \sim 0.52
$$

No clusters:

similar behavior for $n=2$ and $n=3$

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow It has been found that

```
\(\left\langle v_{n}\right\rangle\) grows with \(\left\langle\epsilon_{n}\right\rangle\)
```


\rightarrow for ${ }^{12} \mathrm{C}$ collisions v_{3} should grow with multiplicity even stronger than ϵ_{3}

Triangularity vs ellipticity

clustered
unclustered

Clusters:

Anticorrelation of ϵ_{2} and ϵ_{3}

Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

Other systems

Other systems (Wiringa's distributions)

[work with Maciej Rybczyński]

Conclusions

Is there collectivity in $\mathrm{p}-\mathrm{Pb}$?

Collective dynamics is compatible with the high-multiplicity soft LHC data for $\mathrm{p}-\mathrm{Pb}$

- Large v_{2} and v_{3} coefficients measured in $\mathrm{p}-\mathrm{Pb}$ reasonably reproduced, including the p_{T} dependence
- Model 2D correlations exhibit the two ridges, in particular the near-side ridge
- Mass ordering in $\left\langle p_{T}\right\rangle$ and flow coefficients reproduced
- Numerous effects should still be incorporated (jets, core-corona, ...)
- more important for the lower-multiplicity events

α clusters

Clustered geometry of the ground state \rightarrow harmonic flow

Best signatures of ${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Decrease of scaled variance of triangularity with multiplicity for the highest multiplicity events
- Anticorrelation of ellipticity and triangularity

Extensions (in progress)

- Other systems, more detailed modeling involving e-by-e hydro

Possible future data (NA61, RHIC?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α-cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models

