Thermal description of transverse-momentum spectra at RHIC

Wojciech Florkowski and Wojciech Broniowski

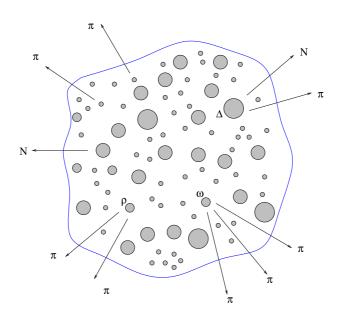
Theory Department Institute of Nuclear Physics, Kraków, Poland

July, 2002

PRL 87 (2001) 272302, PRC 65 (2002) 064905

Single-Freeze-Out Model

- I. chemical and thermal freeze-outs occur simultaneously
 - no elastic rescattering after chemical freeze-out
 - TWO thermodynamic parameters T and μ_B obtained from the analysis of the ratios of the particle multiplicities 1



¹Rafelski, Becattini, Gaździcki, Gorenstein, Braun-Munzinger, Stachel, Cleymans, Redlich, ...

II. complete treatment of the resonances

- all decays included exactly in a semi-analytic fashion, no approximations, no Monte-Carlo
- the same number of the resonances as that used in the study of the ratios

III. Hubble-like expansion

 definition of the freeze-out hypersurface (Bjorken, Csörgő-Lörstad, Heinz)

$$au=\sqrt{t^2-r_z^2-r_x^2-r_y^2}={
m const}$$

$$u^{\mu} = \partial^{\mu}\tau = \frac{x^{\mu}}{\tau} = \frac{t}{\tau} \left(1, \frac{r_z}{t}, \frac{r_x}{t}, \frac{r_y}{t} \right)$$

– TWO expansion parameters: τ fixes overall normalization, $\rho_{\rm max}/\tau$ determines the shape of the spectra

$$\sqrt{r_x^2+r_y^2}<\rho_{\mathsf{max}}$$

the model is boost-invariant

Parameters

I. our analysis of the particle ratios, nucl-th/0106009 (APPB 33 (2002) 761), gives two thermodynamic parameters:

$$T = 165 \pm 7 \text{ MeV}, \ \mu_B = 41 \pm 5 \text{ MeV}$$

- T very close to the critical temperature inferred from the lattice simulations of QCD (Karsch (173+154)/2=164)
- consistent with other calculations (Braun-Munzinger, Magestro, Redlich, and Stachel, PLB 518 (2001) 41)
- strangeness conservation gives: $\mu_S=9$ MeV, isospin violation in the gold nuclei gives: $\mu_I=-1$ MeV

II. then, the analysis of the spectra yields two expansion parameters:

minimum-bias data:

$$au=5.55$$
 fm, $ho_{ ext{max}}=4.50$ fm

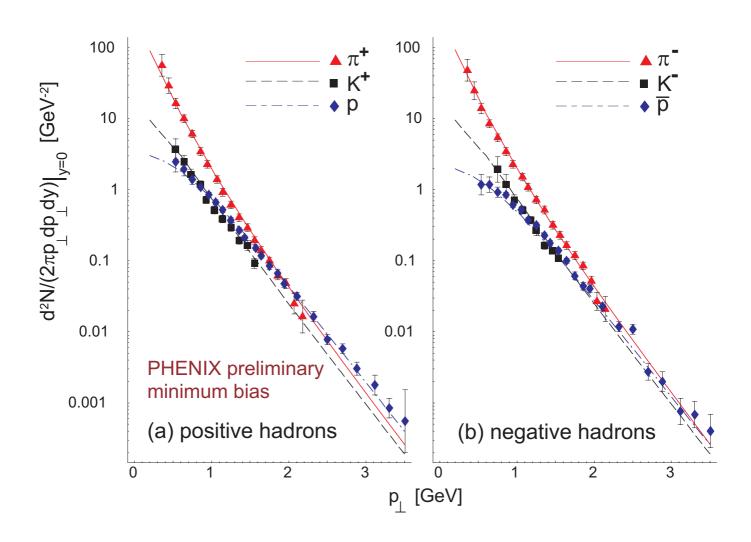
central events:

$$\tau=7.66$$
 fm, $\rho_{\text{max}}=6.69$ fm

other characteristics follow, for example, in central events:

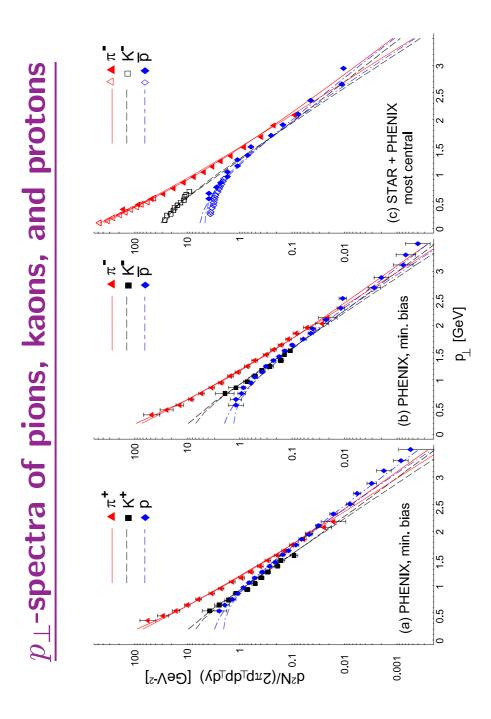
$$\langle \beta_{\perp} \rangle = 0.49, \ \beta_{\perp}^{\mathsf{max}} = 0.66$$

Minimum Bias Data from PHENIX Au+Au at $\sqrt{s_{NN}}$ = 130 GeV



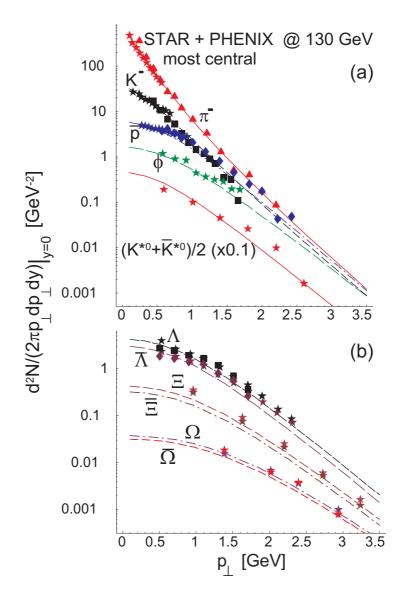
data from: Velkovska (PHENIX) nucl-ex/0105017, QM01, Nucl. Phys. A698 (2002) 507c

 π^0 also agrees

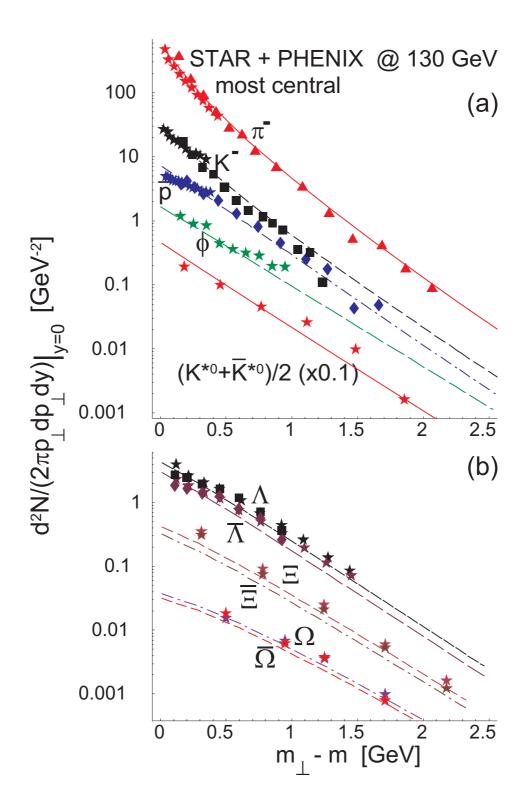


data from: Velkovska (PHENIX) + Harris (STAR) talk at QM01

Most Central Events from PHENIX and STAR, $\sqrt{s_{NN}}=130~{\rm GeV}$



 π^-, K^-, \bar{p} are fitted, other curves – predictions all theoretical curves and data are absolutely normalized!



input used to fix au and ho^{\max} :

 π^-, \bar{p} - Velkovska (PHENIX) nucl-ex/0105017, QM01, Nucl. Phys. A698 (2002) 507c

 π^-, K^- - Harris (STAR) talk at QM01

predictions are compared to the data:

 ϕ - STAR, PRC 65 (2002) 041901

 K^* - STAR, nucl-ex/0205015, (*)

 $\Lambda, \bar{\Lambda}$ - STAR, nucl-ex/0203016; PHENIX, nucl-ex/0204007

 $\Xi, \bar{\Xi}$ - J. Castillo for STAR, talk at SQM 2001, Frankfurt

 $\Omega, \bar{\Omega}$ - B. Hippolyte for STAR, talk at CRIS2002, Catania

figure shows the up-to-date data for π^-, K^- and \bar{p}

conclusions:

- I. production of strange particles is very well reproduced by the model
- II. good description of K^* supports the idea of a single freeze-out, see (*)

Fit of the Particle Ratios

WF + WB + M. Michalec, nucl-th/0106009, APPB 33 (2002) 761

	Thermal Model	Experiment
T [MeV]	165±7	
$\mu_B \; [{\sf MeV}]$	41±5	
χ^2/n	0.97	
π^-/π^+	1.02	1.00 ± 0.02 [PHOBOS] 0.99 ± 0.02 [BRAHMS]
\overline{p}/π^-	0.09	$0.08 \pm 0.01 [STAR]$
K^-/K^+	0.92	$0.88 \pm 0.05 [{\rm STAR}] \ 0.91 \pm 0.09 [{\rm PHOBOS}] \ 0.78 \pm 0.12 [{\rm PHENIX}] \ 0.92 \pm 0.06 [{\rm BRAHMS}]$
K^-/π^-	0.16	0.15 ± 0.02 [STAR]
K_0^*/h^-	0.046	$0.060 \pm 0.012 \text{ [STAR]} $ 0.042 ± 0.011
$\overline{K_0^*}/h^-$	0.041	$0.058 \pm 0.012 \text{ [STAR]} \\ 0.039 \pm 0.011$
\overline{p}/p	0.65	$0.61 \pm 0.07 [{ m STAR}] \ 0.60 \pm 0.07 [{ m PHOBOS}] \ 0.54 \pm 0.08 [{ m PHENIX}] \ 0.61 \pm 0.06 [{ m BRAHMS}]$
$\overline{\Lambda}/\Lambda$	0.69	$0.73 \pm 0.03 [STAR]$
$\overline{\Xi}/\Xi$	0.76	$0.82 \pm 0.08 [{ m STAR}]$

other ratios (with the feeding from all weak decays included):

$$\frac{\phi}{h^{-}} = 0.019, \quad \text{expt. } 0.021 \pm 0.001$$

$$\frac{\phi}{K^{-}} = 0.15, \quad \text{expt. } 0.10 - 0.16$$

$$\frac{\Omega^{-}}{\Xi^{-}} = 0.18, \quad \frac{\Xi^{-}}{\Sigma^{-}} = 0.55, \quad \frac{\Sigma^{-}}{\Lambda} = 0.20$$

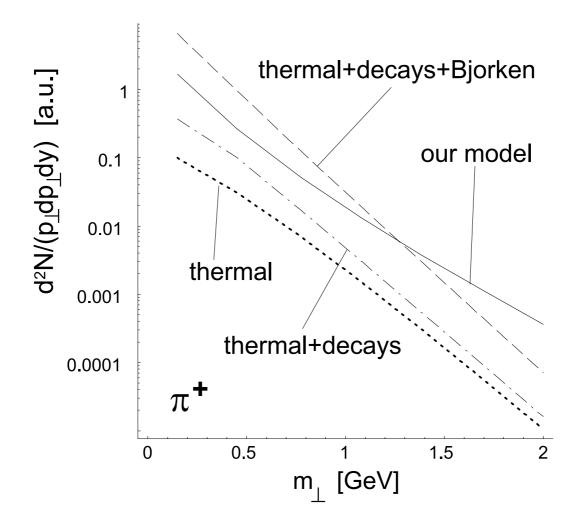
$$\frac{\Lambda}{p} = 0.47, \quad \text{expt. } 0.49 \pm 0.03$$

$$\frac{\Omega^{+}}{\Omega^{-}} = 0.85, \quad \frac{\Xi^{+}}{\Xi^{-}} = 0.76, \quad \frac{\Sigma^{+}}{\Sigma^{-}} = 1.02$$

expt. = Yamamoto (STAR) hep-ph/0112017 + (STAR) nucl-ex/0203016 + (STAR) PRL 87 (2001) 262302

- besides the shape of the spectra, we reproduce (at the moment) 11 independent ratios of the hadron multiplicities!
- normalization of each spectrum is fixed by the model
- at midrapidity (y=0), for the boost-invariant systems $\frac{dN_i/dy}{dN_i/dy} = \frac{N_i}{N_i} = {\rm ratio~in~a~static~fireball}$
- no 4π acceptance is required, contrary, 4π -measurements obscure the thermodynamic picture, since the ratios in the fragmentation regions are different
- if the freeze-out hypersurface is defined, all experimental cuts can be easily included in the model

Redshifts and Blueshifts



contributions of various effects to the $p_\perp\text{-spectrum}$ of π^+

convex shape of the spectrum originates only from the transverse flow

Heinz: we deal with LITTLE BANG

Spectra do not reveal the true temperature!

- a) hydrodynamic longitudinal/transverse flow
- b) decays of resonances lowering of the inverse slopes by 30 40 MeV (nucl-th/0106009, APPB 33 (2002) 761) for pions, kaons, protons, and lambdas!
- c) quantum statistics (pions)
- d) slowly varying functions, for example, for the Boltzmann statistics we have

$$\frac{dN}{2\pi m_{\perp} dm_{\perp} dy}(y=0) \sim m_{\perp} \exp\left(-\frac{m_{\perp}}{T}\right)$$

no simple parametrizations of our results is possible

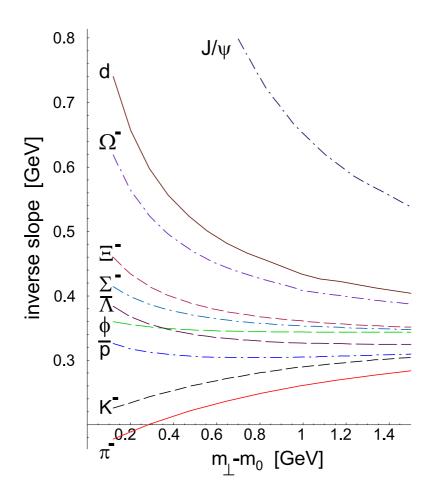
in particular, a commonly used formula

$$\lambda_i = T + \text{const } m_i \langle \beta_{\perp} \rangle$$

does not hold in our model

local inverse slopes

$$\lambda_i = -\left[rac{d}{dm_{\perp}}\ln\left(rac{dN_i}{2\pi m_{\perp}dm_{\perp}dy}\left|_{y=0}
ight)
ight]^{-1} \ \lambda_{\infty} \simeq rac{T}{\sqrt{1+
ho_{\mathsf{max}}^2/ au^2}-
ho_{\mathsf{max}}/ au} = 363 \; \mathsf{MeV}$$



Parametrization of the Freeze-Out

parametrization of the hyper-surface

$$t = \tau \cosh \alpha_{\parallel} \cosh \alpha_{\perp}, \quad r_z = \tau \sinh \alpha_{\parallel} \cosh \alpha_{\perp},$$
 $r_x = \tau \sinh \alpha_{\perp} \cos \phi, \quad r_y = \tau \sinh \alpha_{\perp} \sin \phi,$

- ullet $lpha_{\parallel}$ rapidity of the fluid element $v_z=z/t= anhlpha_{\parallel}$
- α_{\perp} transverse size of the system $ho = \tau \sinh \alpha_{\perp}$

parametrization of the particle four-momentum

$$p^{\mu} = (m_{\perp} \cosh y, m_{\perp} \sinh y, p_{\perp} \cos \varphi, p_{\perp} \sin \varphi)$$

- y rapidity
- p_{\perp} transverse momentum

Cooper-Frye formula

$$\frac{dN_i}{d^2p_{\perp}dy} = \int d\Sigma_{\mu} p^{\mu} f_i (p \cdot u)$$

$$egin{array}{lll} rac{dN_i}{d^2p_\perp dy} &=& au^3 \int_{-\infty}^{+\infty} dlpha_\parallel \int_0^{
ho {\sf max}/ au} \sinhlpha_\perp d \left(\sinhlpha_\perp
ight) \ & imes \int_0^{2\pi} d\xi \; p\cdot u \; f_i \left(p\cdot u
ight) \end{array}$$

rapidity distribution is boost invariant

$$p\cdot u=m_{\perp}\cosh\left(y-lpha_{\parallel}
ight)\coshlpha_{\perp}-p_{\perp}\cos\xi\sinhlpha_{\perp}$$
 where $\xi=\phi-arphi$

our standard thermal fit can be used!

$$\frac{dN_i}{dy} = \int d^2p_{\perp} \frac{dN_i}{d^2p_{\perp}dy}$$

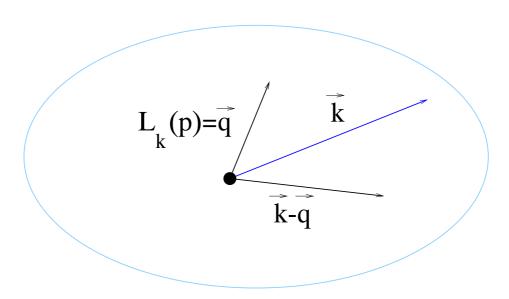
$$= \pi \rho_{\text{max}}^2 \tau \int d^3p' f_i \left(\sqrt{p'^2 + m_i^2} \right)$$

Spectra of Secondaries

for two-body decays, the spectrum of the emitted particle is

$$\delta f_1(|\mathbf{q}|) = b \frac{2J_R + 1}{2J_1 + 1} \int d^3k f(k) \int \frac{d^3p}{4\pi p^{*2}}$$
$$\times \delta(|\mathbf{p}| - p^*) \delta^{(3)} (\hat{L}_k \mathbf{p} - \mathbf{q})$$

isotropic distribution of particle 1 in the resonance rest frame is boosted to the fireball frame, and there folded with the resonance distribution



for three-body decays extra integration over p^*

Sollfrank, Koch, Heinz transform $dN/(dyd^2p_\perp)$ more general but also more complicated approach

 ${f p}$ — momentum of the emitted particle in the rest frame of the resonance, \hat{L}_k — Lorentz transformation to the fireball rest frame

$$\hat{L}_k \mathbf{p} = \mathbf{p} + [(\gamma_k - 1) \ v_k^2 \mathbf{v}_k \cdot \mathbf{p} + \gamma_k \ E^*] \mathbf{v}_k$$

k – momentum of the resonance in the fireball

$$\mathbf{v}_k = \frac{\mathbf{k}}{\sqrt{k^2 + m_R^2}}, \quad \gamma_k = \left(1 - v_k^2\right)^{-1/2}$$

$$p^* = \frac{((m_R^2 - (m_1 - m_2)^2)(m_R^2 - (m_1 + m_2)^2))^{1/2}}{2m_R}$$
$$E^* = \sqrt{m_1^2 + p_*^2}$$

 m_R — mass of the resonance, m_1 and m_2 masses of the emitted particles, b is the branching ratio for the channel, J_R and J_1 are the spins of the resonance and particle 1

$$\delta f_1(q) = b \frac{2J_R + 1}{2J_1 + 1} \frac{m_R}{2E_q p^* q} \int_{k_-(q)}^{k_+(q)} k \, dk \, f(k)$$

limits of integration

$$k_{\pm}(q) = \frac{m_R |E^* q \pm p^* E_q|}{m_1^2}$$

our freeze-out hypersurface satisfies the condition

$$d\Sigma^{\mu} \sim u^{\mu}$$

all decays may be calculated in the rest frame

$$u^{\mu} = (1, 0, 0, 0)$$

no need to use Monte-Carlo methods, sequential decays can be easily done, nucl-th/0112043 (PRC 65 (2002) 064905)

HBT Radii

our system is too small, such behavior is typical for thermal models, one uses the excluded volume corections: Hagedorn, Gorenstein, Braun-Munzinger

$$\frac{dN_i}{d^2 p_{\perp} dy} = \frac{\tau^3}{(2\pi)^3} \int_{-\infty}^{+\infty} d\alpha_{\parallel} \int_{0}^{\rho_{\text{max}}/\tau} \sinh \alpha_{\perp} d \left(\sinh \alpha_{\perp} \right) \\
\times \int_{0}^{2\pi} d\xi \ p_i \cdot u \ \exp \left(-\beta p_i \cdot u \right) S_i^{-3}$$

in the self-consistent treatment of Gorenstein et al.

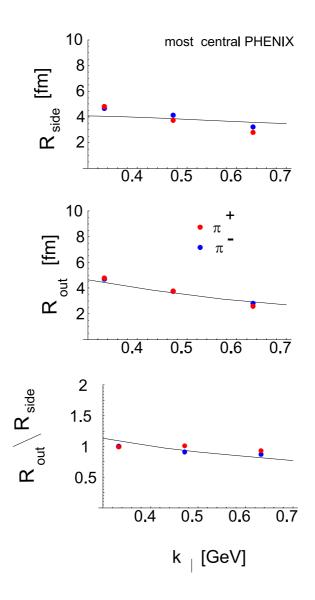
$$S_i^{-3} = \frac{e^{-Pv_i/T}}{1 + \sum_j v_j e^{-Pv_j/T} n_j}$$

spectra do not change if: $au o S_i au$ and $ho_{\max} o S_i
ho_{\max}$

for our values of the thermodynamic parameters

$$S=1.3$$
 for $r=$ 0.6 fm, $v_i=4\frac{4}{3}\pi(r_i)^3$

we take v_i universal for all hadrons (ratios do not change)



approximation: instantaneous decays of the resonances

similarity to the Blast-Wave parametrizations, Hardtke (STAR)

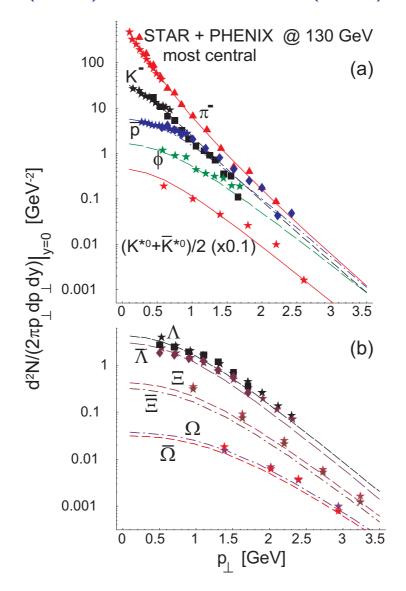
information about the freeze-out hypersurface

Conclusions

- simple explanation of the p_{\perp} spectra of all measured hadrons with a surprising accuracy (ρ_{\max}, τ)
- ullet model fits also the particle ratios (T,μ_B) and yields $R_{
 m side}pprox R_{
 m out}$
- small sizes of the hadronic system, compatible with the measured HBT radii, the size of the system is affected by the excluded-volume corrections (v)
- the hydrodynamical evolution is omitted, the shape of the freeze-out surface is the input
- the inclusion of the resonances is crucial for the success of the model, semi-analytic approach, no need for Monte-Carlo methods
- other observables can be calculated easily (rapidity dependence, eliptic flow)
- the model works also for SPS

Most Central Events from PHENIX and STAR, $\sqrt{s_{NN}}=130~{\rm GeV}$

single-freeze-out model, Broniowski + Florkowski, PRL 87 (2001) 272302, PRC 65 (2002) 064905



all theoretical curves and data are absolutely normalized - exp. ratios are reproduced