Rapidity spectra from THERMINATOR*

Wojciech Broniowski^{1,2} and Bartłomiej Biedroń³

¹Institute of Physics, Świętokrzyska Academy
 ²Institute of Nuclear Physics PAN
 ³M.Sc. student at AGH University of Science and Technology

Workshop of the European Research Group on Ultra Relativistic Heavy Ion Physics, Grybów 2007

*based on nucl-th/0610083

Wojciech Broniowski, Bartłomiej Biedroń

Outline

Experimental facts

2 The model

- Geometry and kinematics
- The single freeze-out model

Results 3

- Fit
- Rapidity spectra
- *p_T*-spectra
- Predictions

A (1) > A (1) > A

Typical data

This talk: data from BRAHMS

Wojciech Broniowski, Bartłomiej Biedroń dl

Geometry and kinematics The single freeze-out model

(日) (同) (日) (日)

4π vs. midrapidity

Up to now two basic categories of calculations:

- (1) 4π studies at low energies (SIS, AGS), $N_i = V \int d^3 p f_i(\sqrt{m_i^2 + p^2}; T, \mu's)$
- (2) Studies at mid-rapidity for approximately boost-invariant systems at highest energies (RHIC) at |y| < 1
- WB+Florkowski, PRL 87 (2001) 272302:

$$\frac{dN_i/dy}{dN_j/dy} = \frac{\int dy \ dN_i/dy}{\int dy \ dN_j/dy} = \frac{N_i}{N_j}.$$

- Inclusion of resonance decays simple in both approaches
- Cooper-Frye \rightarrow spectra $dN/(2\pi p_T dp_T dy)$

Geometry and kinematics The single freeze-out model

Geometry and kinematics

- Boost non-invariant system
- \bullet Particles with the same pseudorapidity η originate from different regions
- Thermal conditions and flow in these regions are different

Geometry and kinematics The single freeze-out model

(日) (同) (三) (三)

Boost-noninvariant calculation

- THERMINATOR [A. Kisiel, T. Tałuć, WB, WF, Comput.Phys.Commun. 174 (2006) 669-687] → Monte Carlo
- $\bullet\,$ Choice of the shape of the freeze-out hypersurface Σ and collective expansion
- Dependence of thermal parameters on the position within Σ
- Parameters are fitted independently to various combinations of the data, reducing freedom

Result:

"topography" of the fireball, which forms the ground for other studies

Geometry and kinematics The single freeze-out model

(日) (同) (日) (日)

Cracow model

- At a certain stage thermal equilibrium between hadrons occurs (probably born that way)
- **2** The parameters: T, μ_B , μ_S , and μ_{I_3} . In a boost-non-invariant model these parameters depend on the position
- The shape of the fireball is nontrivial in the longitudinal direction
- O Hubble flow → longitudinal and transverse flow. Again, in the boost-non-invariant model the form of the velocity field may depend on the longitudinal position
- The evolution after freeze-out includes decays of (all) resonances which may proceed in cascades
- Elastic rescattering after the chemical freeze-out is ignored (approximation)

Geometry and kinematics The single freeze-out model

Hypersurface and flow

$$x^{\mu} = \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \tau \cosh \alpha_{\perp} \cosh \alpha_{\parallel} \\ \tau \sinh \alpha_{\perp} \cos \phi \\ \tau \sinh \alpha_{\perp} \sin \phi \\ \tau \cosh \alpha_{\perp} \sinh \alpha_{\parallel} \end{pmatrix}$$

 α_{\parallel} - spatial rapidity, α_{\perp} - transverse rapidity

$$\rho = \sqrt{x^2 + y^2} = \tau \sinh \alpha_\perp$$

The four-velocity follows the Hubble law

$$u^{\mu}=x^{\mu}/\tau.$$

The longitudinal flow $v_z = \tanh \alpha_{\parallel} = z/t$ as in the Bjorken model, the transverse flow (at z = 0) has the form $v_{\rho} = \tanh \alpha_{\perp}$.

Geometry and kinematics The single freeze-out model

(日) (同) (三) (三)

Cooler or thinner?

Yields drop with $y \rightarrow (1)$ decrease the transverse size with |y|, or (2) decrease T, or both. BRAHMS: $(dN_{\pi}/dy)/(dN_{K}/dy)$ is, within a few %, independent of $y \rightarrow T \sim \text{const.}$, and we must take (1)!

Geometry and kinematics The single freeze-out model

(日) (同) (日) (日)

Approximate constancy of T

• The universal freeze-out curve gives from $\mu_B = 0$ to $\mu_B = 250 \text{ MeV}$ a practically constant value of *T*. Thus, in the present analysis we may fix

T = 165 MeV.

- At larger rapidity and/or lower collision energies, T does depend on α_{\parallel} .
- Eventually, when the fragmentation region is reached, $\mathcal{T}\sim 0$ and $\mu_B\sim 1~\text{GeV}$

Geometry and kinematics The single freeze-out model

(日) (同) (日) (日)

The farther, the thinner!

A new element in this work:

$$\mathsf{0} \leq lpha_\perp \leq lpha_\perp^{\max}(lpha_\parallel) \equiv lpha_\perp^{\max}(\mathsf{0}) \exp\left(-rac{lpha_\parallel^2}{2\Delta^2}
ight).$$

- As we depart from the center by increasing $|\alpha_{\parallel}|$, we reduce α_{\perp} , or ρ_{\max} . The rate of this reduction is controlled by a new model parameter, Δ . The farther, the thinner!
- We admit the dependence of chemical potentials on the spatial rapidity, necessary to describe the increasing density of net protons towards the fragmentation region

Fit Rapidity spectra *p*_T-spectra Predictions

Fitting strategy

- For a given set of parameters we generate THERMINATOR events
- First optimize $\mu_B(0)$ and A_B with the experimental p/\bar{p} rapidity dependence
- Then fix $\mu_S(0)$ and A_S using K^+/K^-
- Iterate two above items until a fixed point is reached
- $\mu_{I_3}(0)$ and A_{I_3} are consistent with zero and thus irrelevant
- The Δ parameter is fixed with the pion rapidity spectra $dN_{\pi^{\pm}}/dy$, with the optimum value $\Delta = 3.33$

Result:

$$\mu_B(0) = 19 \text{ MeV}, \ \mu_S(0) = 4.8 \text{ MeV}, \ A_B = 0.65, \ A_S = 0.70$$

Fit Rapidity spectra *p*_T-spectra Predictions

The farther, the denser!

Fit Rapidity spectra p_T -spectra Predictions

μ_B at large rapidities

• Near $\alpha_{\parallel} = 3 \ \mu_B$ is around 200 MeV, more than 10 times larger than at the origin – comparable to the highest-energy SPS fit, where $\mu_B \simeq 230 \ \text{MeV}$ (Michalec, Ph.D., 2001)

Wojciech Broniowski, Bartłomiej Biedroń

dN/dy from THERMINATOR

< 3 > .

Fit Rapidity spectra *pT*-spectra Predictions

イロン イロン イヨン イヨン

æ

 μ_B/μ_S

• $\mu_B(lpha_\parallel)/\mu_S(lpha_\parallel)$ is very close to a constant, $\simeq 4-3.5$

Fit Rapidity spectra p_{T} -spectra Predictions

Zero strangeness density

• Results consistent with zero strangeness density

solid – μ_S from the fit to the data dashed – from the condition of zero local strangeness density

Fit Rapidity spectra *p*_T-spectra Predictions

Ratios

æ

triangles – BRAHMS data dots – model with fitted dependence of $\mu's$ on α_{\perp}

Fit Rapidity spectra *pT*-spectra Predictions

π and K

 π^+ with (upper) and without (lower) feeding from the weak decays

<ロ> (四) (四) (日) (日) (日)

æ

Fit Rapidity spectra p_{T} -spectra Predictions

$p \text{ and } \overline{p}$

Left: with (black) and without (red) feeding from the weak decays (experiment is without the feeding)

Experimental facts Fit The model Rapidity spectra Results ρ₇-spectra Summary Predictions

Hyperons

Summary

- Naive extraction of the μ_B and μ_S from p/\bar{p} and K^+/K^- works surprisingly well!
- μ_B and μ_S grow with α_⊥, reaching at y ~ 3 values close to those of the highest SPS energies (cf. Roehrich)
- At mid-rapidity the values of $\mu's$ are lower than derived from the previous thermal fits to the data for $|y| \leq 1$, with our values taking $\mu_B(0) = 19$ MeV and $\mu_S(0) = 5$ MeV
- The local strangeness density of the fireball is compatible with zero at all values of $\alpha_{\parallel}.$
- μ_B/μ_S varies very weakly with rapidity, ranging from \sim 4 at midrapidity to \sim 3.5 at larger rapidities.
- The $d^2 N/(2\pi p_\perp dp_\perp dy)$ spectra of pions and kaons are well reproduced

・ロト ・ 一日 ・ ・ ヨト ・ ・ ヨト

Summary 2

- The rapidity shape of the spectra of *p* and *p̄* is described properly, while the model overpredicts the yields by about 50%. This suggests a lower value of *T* at increased rapidity, or presence of the *γ* factors
- Increasing yield of the net protons with rapidity is obtained naturally, explaining the shape of the rapidity dependence on purely statistical grounds

(日) (同) (日) (日)