Chiral quark models in high-energy processes

Wojciech Broniowski with E. Ruiz Arriola, A. E. Dorokhov, and K. Golec-Biernat

Theory Division seminar, IFJ PAN, 29.11.07

(日) (四) (王) (王)

1

Introduction

- Details can be found ...
- The basic scheme
- Example: DIS
- Exclusive processes

Pion Distribution Amplitude

- Definition
- Evaluation in chiral quark models
- Results
- ERBL evolution

GPD of the pion

- Properties of GPD
- Quark-model evaluation
- GPD in QM
- Lattice results

Backup slides

Photon DA in quark models

Details can be found ... The basic scheme Example: DIS Exclusive processes

- Pion light cone wave function and pion distribution amplitude in the NJL model, Phys.Rev.D66:094016,2002, hep-ph/0207266
- Spectral quark model and low-energy hadron phenomenology, Phys.Rev.D67:074021,2003, hep-ph/0301202
- Impact parameter dependence of the GPD of the pion in chiral quark models, Phys.Lett.B574:57-64,2003, hep-ph/0307198
- Application of chiral quark models to high-energy processes, *Bled 2004, Quark dynamics* 7-10, hep-ph/0410041
- Pion transition form factor and distribution amplitudes in large-N_c Regge models, Phys.Rev.D74:034008,2006, hep-ph/0605318
- Photon DA's and light-cone wave functions in chiral quark models, EAD+, Phys.Rev.D74:054023,2006, hep-ph/0607171
- Pion-photon Transition Distribution Amplitudes in the Spectral Quark Model, Phys.Lett.B649:49,2007, hep-ph/0701243
- numerous references to the field

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Details can be found ... The basic scheme Example: DIS Exclusive processes

"Low energy meets high energy"

- Low-energy quark models are used to compute low-energy matrix elements of hadronic operators (for pions and photons)
- Matching to QCD at the low quark-model scale
- QCD evolution to experimental scales
- Comparison to (indirect) data (DA, PDF) sets the matching scale
- Approximations: leading twist (known QCD evolution), large number of colors (= one quark loop), LO evolution, chiral limit

Introduction

Pion Distribution Amplitude GPD of the pion Summary Backup slides Details can be found ... The basic scheme **Example: DIS** Exclusive processes

Deep Inelastic Scattering – Parton Distribution Function

$$Q^2 = -q^2, \quad x = \frac{Q^2}{2p \cdot q}, \quad Q^2 \to \infty$$

Factorization of soft and hard processes, Wilson's OPE, twist expansion

$$\langle J(q)J(-q)\rangle = \sum_{i} C_i(Q^2;\mu)\langle \mathcal{O}_i(\mu)\rangle, \ F(x,Q) = F_0(x,\alpha(Q)) + \frac{F_2(x,\alpha(Q))}{Q^2} + \dots$$

The soft matrix element can be computed in low-energy models! $F_i(x, \alpha(Q_0))|_{\text{model}} = F_i(x, \alpha(Q_0))|_{\text{QCD}}, \quad Q_0 - \text{the matching scale}$

Introduction

Pion Distribution Amplitude GPD of the pion Summary Backup slides Details can be found ... The basic scheme Example: DIS **Exclusive processes**

Exclusive processes in QCD

Details can be found ... The basic scheme Example: DIS **Exclusive processes**

Dictionary of matrix elements

a

General structure of the soft matrix elements: $\langle A \mid \mathcal{O} \mid B \rangle$

- A = B = one-particle state Parton Distribution of A (inclusive DIS)
- A = one-particle state, B = vacuum distribution amplitude (DA) of A (hadronic form factors, HMP)
- A, B = one-particle state of different momentum GPD (exclusive DIS, DVCS, HMP)
- A = many-particle state, B = vacuum GDA (transition form factors)
- A \neq B (A, B different hadronic states) Transition Distribution Amplitude ($h\bar{h} \rightarrow \gamma \gamma^*$, Pire & Szymanowski 2004)

Definition Evaluation in chiral quark models Results ERBL evolution

Pion Distribution Amplitude

Definition (for π^+ , leading twist):

$$\langle 0|\overline{d}(z)\gamma_{\mu}\gamma_{5}[z,-z]u(-z)|\pi^{+}(q)\rangle = i\sqrt{2}f_{\pi}(q^{2})q_{\mu}\int_{0}^{1}dx e^{i(2x-1)q\cdot z}\phi(x)$$

z is along the light cone, $z^2 = 0$, $f_{\pi}(m_{\pi}^2) = 93$ MeV – pion decay constant (in the usual light-cone gauge [z, -z] = 1)

(日) (同) (目) (日)

Normalization $\int_0^1 dx \phi(x) = 1$, since $\langle 0|A^-_\mu(0)|\pi^+(q)\rangle = i f_\pi(q^2)q_\mu$

Definition Evaluation in chiral quark models Results ERBL evolution

Leading-twist structure

 γ^{μ}

 $\gamma^5 p$

p

k+q

k+p

k

A sample calculation of the leading-twist Dirac structure

(crossed diagram similar)

Definition Evaluation in chiral quark models Results ERBL evolution

Chiral quark models

Definition Evaluation in chiral quark models Results ERBL evolution

Chiral quark models 2

Model	mass	vertex $G_{\pi qq}$
Nambu-Jona-Lasinio	M = const	$i\gamma_5/F_{\pi}$
instanton-liquid model	$M(p^2) = M_0 r_p^2$	$i\gamma_5 r_k r_{k-q}/F_{\pi}$
Pagels-Stokar model	$M(p^2) = M_0 r_p^2$	$i\gamma_5(r_k^2 + r_{k-q}^2)/(2F_{\pi})$

NJL needs regularization, here Pauli-Villars subtraction All approaches satisfy chiral symmetry constraints, WT identities [monopole form of r_p : Praszałowicz, Rostworowski, Bzdak]

イロト イポト イヨト イヨト

Definition Evaluation in chiral quark models Results ERBL evolution

QM evaluation of DA

1. Invert the definition:

$$\phi(x) = -\frac{i}{\sqrt{2}f_{\pi}(q^2)} \int_{-\infty}^{\infty} \frac{d\tau}{\pi} e^{-i(2x-1)\tau n \cdot q} \langle 0|\bar{d}(\tau n) \not m \gamma_5 u(-\tau n)|\pi^+(q)\rangle$$

where
$$n^{\mu} = (n^0, n^1, n^2, n^3) = (1, 0, 0, -1)$$
, $n \cdot a = a^+$.

2. $\langle 0|\overline{d}(\tau n)\Gamma u(-\tau n)|\pi^+(q)\rangle = (\text{LSZ reduction, one-loop QM})$ = $-\frac{N_c\sqrt{2}}{F_{\pi}}\int \frac{d^4k}{(2\pi)^4}e^{i\tau n\cdot(2k-q)}G_{\pi qq}(k,k-q)\text{Tr}[\Gamma S_k\gamma_5 S_{k-q}]$

э

1+2, evaluation of the trace \rightarrow "generic" QM expression:

$$\phi(x) = -\frac{4iN_c}{f_{\pi}(q^2)} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xq^+) G_{\pi qq}(k, k-q) \frac{(M_{k-q} - M_k)k \cdot n + M_kq \cdot n}{D_k D_{k-q}}$$

 M_p – momentum-dependent constituent quark mass, $D_p=p^2-M_p^2+i0$ One-loop diagram (leading $1/N_c$) with constrained integration

(日) (同) (目) (日)

Definition Evaluation in chiral quark models **Results** ERBL evolution

Results

These results are at some low quark-model scale Q_0

문 > 문

Definition Evaluation in chiral quark models Results ERBL evolution

QCD evolution

The LO evolved distribution amplitudes read (Efremov-Radyushkin, Brodsky-Lepage, Mueller 95)

$$\phi^{i}(x,Q^{2}) = \phi_{\rm as}(x) \sum_{n=0,2,4,\dots}^{\infty} C_{n}^{3/2}(2x-1)a_{n}(Q^{2}),$$

 $\phi_{\rm as}(x)=6x(1-x),\ C_n^{3/2}$ – Gegenbauer polynomials, a_n evolve with the scale:

$$\begin{aligned} a_n(Q^2) &= a_n(Q_0^2) \left(\frac{\alpha(Q^2)}{\alpha(Q_0^2)}\right)^{(\gamma_n - \gamma_0)/(2\beta_0)} \\ a_n(Q_0^2) &= \frac{2}{3} \frac{2n+3}{(n+1)(n+2)} \int_0^1 dx C_n^{3/2} (2x-1) \phi(x,Q_0^2). \\ \gamma_n &= -\frac{8}{3} \left[3 + \frac{2}{(n+1)(n+2)} - 4 \sum_{k=1}^{n+1} \frac{1}{k}\right], \ \beta_0 &= \frac{11}{3} N_c - \frac{2}{3} N_f = 9 \end{aligned}$$

WB Chi

Chiral guark models ...

Definition Evaluation in chiral quark models Results **ERBL evolution**

Evolved results

The analysis of Schmedding, Yakovlev, Bakulev, Mikhailov, Stefanis, of the CLEO experimental data gives $a_2(5.8 \text{GeV}^2) = 0.12 \pm 0.03$. Our method of determining Q_0 : evolve the distribution amplitude from an arbitrary scale Q_0 to the CLEO scale Q = 2.4 GeV and adjust Q_0 such that $a_2 = 0.12$

	Pagels-Stokar	Instanton	NJL/SQM
Q_0 [GeV]	0.5	0.39	0.32
a_4	0.074	0.010	0.044
a_6	0.046	-0.006	0.023
$\sum_{n=2,4,\ldots}a_n$	0.475	0.123	0.250

[momentum-fraction analysis gives very similar value of Q_0]

Definition Evaluation in chiral quark models Results ERBL evolution

Evolved DA of the pion

Pion DA evolved to the scale $Q=2.4~{\rm GeV}$ from Q_0 specific to the given model

< 17 × < 17 ×

Definition Evaluation in chiral quark models Results ERBL evolution

Comparison to experimental and lattice data

э

Definition Evaluation in chiral quark models Results ERBL evolution

Comparison to experimental and lattice data

band: transverse lattice data lines: QM at Q = 0.5, 0.75, 1 GeV

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Definition of GPD

Generalized Parton Distributions

The two isospin projections of the twist-2 GPD of the pion are defined as

$$\delta_{ab} \mathcal{H}^{I=0}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixp^{+}z^{-}} \langle \pi^{b}(p+q) | \bar{\psi}(0)\gamma \cdot n\psi(z) | \pi^{a}(p) \rangle \big|_{z^{+}=0,z^{\perp}=0}$$
$$i\epsilon_{3ab} \mathcal{H}^{I=1}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixp^{+}z^{-}} \langle \pi^{b}(p+q) | \bar{\psi}(0)\gamma \cdot n\psi(z) \tau_{3} | \pi^{a}(p) \rangle \big|_{z^{+}=0,z^{\perp}=0}$$

where $p^2 = m_\pi^2$, $q^2 = -2p \cdot q = t$, $n^2 = 0$, $p \cdot n = 1$, $q \cdot n = -\zeta$ ζ - momentum transferred along the light cone

イロン イボン イヨン イヨン

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Some background

- K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47 (2001) 401, hep-ph/0106012
- M. Diehl, Phys. Rept. 388 (2003) 41, hep-ph/0307382
- A. V. Belitsky, A. V. Radushkin, Phys.Rept.418(2005)1, hep-ph/0504030

GPD's provide more detailed information of the structure of hadrons, three-dimensional picture instead of one-dimensional projection of the usual PD. Information on GPD's may come from such processes as $ep \rightarrow ep\gamma$, $\gamma p \rightarrow pl^+l^-$, $ep \rightarrow epl^+l^-$, or from lattices. Small cross sections of exclusive processes require very high accuracy experiments. First results are for the nucleon coming from HERMES and CLAS, also COMPASS, H1, ZEUS

・ロト ・ 同ト ・ ヨト ・ ヨト

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Formal features

In the symmetric notation one introduces $\xi = \frac{\zeta}{2-\zeta}$, $X = \frac{x-\zeta/2}{1-\zeta/2}$, where $0 \le \xi \le 1$ and $-1 \le X \le 1$. Then

$$H^{I=0,1}(X,\xi,t) = \mathcal{H}^{I=0,1}\left(\frac{\xi+X}{\xi+1}, \frac{2\xi}{\xi+1}, t\right)$$

with the symmetry properties

$$H^{I=0}(X,\xi,t) = -H^{I=0}(-X,\xi,t), \ H^{I=1}(X,\xi,t) = H^{I=1}(-X,\xi,t).$$

The following **sum rules** hold:

$$\begin{aligned} \forall \xi : & \int_{-1}^{1} dX \, H^{I=1}(X,\xi,t) = 2F_V(t), \\ \forall \xi : & \int_{-1}^{1} dX \, X \, H^{I=0}(X,\xi,t) = \theta_2(t) - \xi^2 \theta_1(t) \end{aligned}$$

where $F_V(t)$ is the electromagnetic form factor, while in large- N_c quark models $\theta_1(t)$ and $\theta_2(t)$ are the gravitational **form factors** of the pion.

,

Properties of GPD Quark-model evaluation GPD in QM Lattice results

The above sum rules express the electric charge conservation and the momentum sum rule in deep inelastic scattering.

For $X \ge 0$ we have $\mathcal{H}^{I=0,1}(X,0,0) = q(X)$, which relates the GPD to PDF, q(X).

The polynomiality conditions state that

٠

$$\int_{-1}^{1} dX X^{2j} H^{I=1}(X,\xi,t) = \sum_{i=0}^{j} A_{i}^{(j)}(t)\xi^{2i},$$
$$\int_{-1}^{1} dX X^{2j+1} H^{I=0}(X,\xi,t) = \sum_{i=0}^{j+1} B_{i}^{(j)}(t)\xi^{2i},$$

where $A_i^{(j)}(t)$ and $A_i^{(j)}(t)$ are the coefficient functions (form factors) depending on j and i. The conditions follow from the Lorentz invariance, time reversal, and hermiticity, hence are satisfied in approaches that obey these requirements

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Positivity bound states that

$$|H_q(X,\xi,t)| \le \sqrt{q(x_{\rm in})q(x_{\rm out})}, \quad \xi \le X \le 1.$$

where $x_{in} = (x + \xi)/(1 + \xi)$, $x_{out} = (x - \xi)/(1 - \xi)$. Finally, a low-energy theorem holds $H_{I=1}(2z - 1, 1, 0) = \phi(z)$

The above relations and bounds form severe constraints for the form of the pion $\ensuremath{\mathsf{GPD}}$

イロト イポト イヨト イヨト

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Positivity bound states that

$$|H_q(X,\xi,t)| \le \sqrt{q(x_{\rm in})q(x_{\rm out})}, \quad \xi \le X \le 1.$$

where $x_{in} = (x + \xi)/(1 + \xi)$, $x_{out} = (x - \xi)/(1 - \xi)$. Finally, a low-energy theorem holds $H_{I=1}(2z - 1, 1, 0) = \phi(z)$

The above relations and bounds form severe constraints for the form of the pion GPD

All are satisfied in our QM calculation

イロト イポト イヨト イヨト

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Quark-model evaluation

Direct (a), crossed (b), and contact (c) contribution to the GPD of the pion. Diagram (c) is responsible for the so-called *D*-term

Properties of GPD Quark-model evaluation GPD in QM Lattice results

PDF

In the special case of $\zeta = t = 0$ GPD becomes the PDF. The NJL result is (Davidson & Arriola, 1995)

q(x) = 1

LO DGLAP QCD evolution of the non-singlet part

イロト イポト イヨト イヨト

э

Properties of GPD Quark-model evaluation GPD in QM Lattice results

PDF

In the special case of $\zeta = t = 0$ GPD becomes the PDF. The NJL result is (Davidson & Arriola, 1995)

q(x) = 1

LO DGLAP QCD evolution of the non-singlet part to the scale $Q^2=(4~{\rm GeV})^2$ of the E615 Fermilab experiment:

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

WB Chiral quark models ...

<ロ> (四) (四) (三) (三) (三)

æ

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

- LO DGLAP the full code
- 1. CF=4/3; L=0.226; beta0=11/3*3-2/3*3;

イロン イロン イヨン イヨン

æ

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

- 1. CF=4/3; L=0.226; beta0=11/3*3-2/3*3;
- 2. $a[Q_] = 4 Pi/beta0/Log[Q^2/L^2];$

イロン イロン イヨン イヨン

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

- 1. CF=4/3; L=0.226; beta0=11/3*3-2/3*3;
- 2. a[Q]= 4 Pi/beta0/Log[Q²/L²];
- 3. Gamma0[n_]=-2 CF(3+2/(n+1)/(n+2)-4 Sum[$1/k, \{k, 1, n+1\}$]);

< ロ > (同 > (回 > (回 >)))

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

- 1. CF=4/3; L=0.226; beta0=11/3*3-2/3*3;
- 2. a[Q]= 4 Pi/beta0/Log[Q²/L²];
- 3. Gamma0[n_]=-2 CF(3+2/(n+1)/(n+2)-4 Sum[$1/k, \{k, 1, n+1\}$]);
- 4. $mu[z_]=1/(1+z)$; (moments of the init. cond. spefic to the model)

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

CF=4/3; L=0.226; beta0=11/3*3-2/3*3;
 a[Q_]= 4 Pi/beta0/Log[Q^2/L^2];
 Gamma0[n_]=-2 CF(3+2/(n+1)/(n+2)-4 Sum[1/k,{k,1,n+1}]);
 mu[z_]=1/(1+z); (moments of the init. cond. - spefic to the model)
 int[x_,r_,Q_]=2(I Exp[I Pi/4]/(2Pi I)x^(-z-1) mu[z]*
 (a[Q]/a[.313])^(Gamma0[z]/(2 beta0)) /. z-> 0.5+I Exp[I Pi/4]r)

イロト イポト イヨト イヨト

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

CF=4/3; L=0.226; beta0=11/3*3-2/3*3;
 a[Q_]= 4 Pi/beta0/Log[Q²/L²];
 Gamma0[n_]=-2 CF(3+2/(n+1)/(n+2)-4 Sum[1/k,{k,1,n+1}]);
 mu[z_]=1/(1+z); (moments of the init. cond. – spefic to the model)
 int[x_,r_,Q_]=2(I Exp[I Pi/4]/(2Pi I)x^(-z-1) mu[z]*
 (a[Q]/a[.313])<sup>(Gamma0[z]/(2 beta0)) /. z-> 0.5+I Exp[I Pi/4]r)
 V[x ,Q]:=NIntegrate[Re[int[x,r,Q]] ,{r,0,-100/Log[x]}]
</sup>

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

<ロ> (四) (四) (三) (三) (三)

æ

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Digression:

LO DGLAP - the full code

For the Kwieciński evolution (one-loop CCFM in the *b*-representation) the same method, only the anomalous dimensions depend on *b*) [WB+ERA, PRD70 (2004) 034012] – many formal features shown

Properties of GPD Quark-model evaluation GPD in QM Lattice results

GPD in chiral quark models

[with K. Golec-Biernat]

WB Chiral quark models ...

イロン イロン イヨン イヨン

Properties of GPD Quark-model evaluation GPD in QM Lattice results

[with K. Golec-Biernat] analytic formulas derived for NJL and SQM, all formal properties satisfied, formulas fit in two lines, no factorization of the *t*-dependence, *etc*.

イロト イポト イヨト イヨト

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Properties of GPD Quark-model evaluation GPD in QM Lattice results

GPD and lattices

[WB+ERA'03]

$$H_{\text{SQM}}(x,0,t) = \frac{m_{\rho}^2 (m_{\rho}^2 + (1-x)^2 t)}{(m_{\rho}^2 - (1-x)^2 t)^2} \theta(x) \theta(1-x)$$
$$F(t) = \int_0^1 dx H_{\text{SQM}}(x,0,t) = \frac{m_{\rho}^2}{m_{\rho}^2 + t}$$

which shows the built-in vector-meson dominance in the model. We pass to the impact-parameter space by the Fourier-Bessel transformation and get

$$q_{\text{SQM}}(b,x) = \frac{m_{\rho}^2}{2\pi(1-x)^2} \left[K_0\left(\frac{bm_{\rho}}{1-x}\right) - \frac{bm_{\rho}}{1-x} K_1\left(\frac{bm_{\rho}}{1-x}\right) \right]$$

Properties of GPD Quark-model evaluation GPD in QM Lattice results

Lattice

labeling of lattice plaquettes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Properties of GPD Quark-model evaluation GPD in QM Lattice results

model qualitative agreement

lattice data

æ

(日) (四) (王) (王)

Summary

- Soft hadronic matrix elements of quark bilinears (**input for the evolution**) can be straightforwardly evaluated for pions and photons at the one-quark-loop level (large N_c, leading teist) at the **quark-model scale** Q₀. All formal features satisfied
- DA, light-cone wave functions, GPD, PDF, GDA, TDA [Pire+Szymanowski]...
- QCD evolution necessary, it allows to determine Q₀
- The quark-model scale Q_0 is very low or low, 300-500 MeV, depending on the particular model
- Some differences between evolved results of variants of chiral quark models models, overall agreement with (scarce) available data very **reasonable**, despite the low value of Q_0
- Nucleon: much more challenging (Bochum, Tübingen) but more rewarding (data!)

Photon DA in quark models

Pion-photon transition form factor

Pion-photon transition form factor

$$\Gamma^{\mu\nu}_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1},q_{2}) = \epsilon_{\mu\nu\alpha\beta}e_{1}^{\mu}e_{2}^{\nu}q_{1}^{\alpha}q_{2}^{\beta}F_{\pi\gamma^{*}\gamma^{*}}(Q^{2},A),$$

wrere

$$Q^2 = -(q_1^2 + q_2^2), \ A = \frac{q_1^2 - q_2^2}{q_1^2 + q_2^2}, \ -1 \le A \le 1.$$

For large virtualities one finds the standard twist decomposition of the pion transition form factor (Brodsky & Lepage, 1980),

$$F_{\pi^0\gamma^*\gamma^*}(Q^2, A) = J^{(2)}(A)\frac{1}{Q^2} + J^{(4)}(A)\frac{1}{Q^4} + \dots,$$

with

$$J^{(2)}(A) = \frac{4f_{\pi}}{N_c} \int_0^1 dx \frac{\phi(x)}{1 - (2x - 1)^2 A^2}$$

Photon DA in quark models

Comparison to CLEO

The pion-photon transition form factor in a large- N_c Regge model. Solid lines from top to bottom: |A| = 1, 0.95, 0.75, 0.5, and 0. The dashed lines indicate the Regge model calculations at various values of AThe Brodsky-Lepage limit for $J^{(2)}$ is obtained with the asymptotic DA 6x(1-x) and equals $2f_{\pi}$ for |A| = 1. The CLEO experimental points are somewhat below this limit.

Photon DA in quark models

Pion light-cone wave function

At the quark-model scale Q_0 (in the chiral limit) we find, leaving k_T unintegrated, NJL:

$$\Psi(x,k_T) = \frac{4N_c M^2}{f_{\pi}^2} \sum_j c_j \frac{1}{k_T^2 + \Lambda_j^2 + M^2} \sim (\text{two subtractions}) \sim \frac{1}{k_T^6}$$

$$\langle k_T^2 \rangle = -\frac{M \langle \bar{q}q \rangle}{f_\pi^2} \sim (600 \text{ MeV})^2$$

SQM:

$$\Psi(x,k_T) = \frac{3m_{\rho}^3}{16\pi (k_T^2 + m_{\rho}^2)^{5/2}}, \quad \langle k_T^2 \rangle = \frac{m_{\rho}^2}{2} = (540 \text{ MeV})^2$$

イロト イポト イヨト イヨト

э

Photon DA in quark models

Analogous analysis for the photon, both real and virtual (ρ -meson) [with ERA and A. E. Dorokhov] basic framework: Braun, Filianov, Ball. Example:

$$\langle 0|\overline{q}(z)\sigma_{\mu\nu}q(-z)|\gamma^{\lambda}(q)\rangle = \\ ie_{q}\langle \overline{q}q\rangle\chi_{m}f_{\perp\gamma}^{t}\left(q^{2}\right)\left(e_{\perp\mu}^{(\lambda)}q_{\nu}-e_{\perp\nu}^{(\lambda)}q_{\mu}\right)\int_{0}^{1}dxe^{i(2x-1)q\cdot z}\phi_{\perp\gamma}(x,q^{2}) + \\ \\ e_{\mu\nu}^{(\lambda)}q_{\mu\nu}^{(\lambda)}e_{\mu\nu}^{(\lambda)}e_{\mu\nu}^{(\lambda)}q_{\mu\nu}^{(\lambda)}e_{\mu\nu}^{($$

Leading-twist photon DA in the tensor channel, $\phi_{\perp\gamma}(x,q^2=0)$, evaluated in the instanton model – solid line, in the NJL model (= 1) – dot dashed line, its asymptotic form – dashed line, and the result of the local appr. to the instanton model – dotted line

Photon DA in quark models

Evolution of the photon DA

Photon DA in quark models

Pion-photon TDA

[Pire and Szymanowski](as GPD, but between the π and γ states)

Top: vector TDA for t = 0 (left) and t = -0.4 GeV (right) several values of ζ : -1, -2/3, -1/3, 0, 1/3, 2/3, and 1. Bottom: the same for the axial TDA, SQM at the scale Q_0