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STAR, hep-ph/0504031 c = 0 − 5% 1



n - multiplicity of (observed) charged particles,
|η| < 0.35, 0.2 < pT < 1.5 GeV, Δφ = 45o

M = p1+p2+...+pn
n , pi - magnitude of the transverse momentum

mix - mixed events

centrality 0-5% 0-10% 10-20% 20-30%
〈n〉 59.6 53.9 36.6 25.0
σn 10.8 12.2 10.2 7.8
〈M〉 523 523 523 520
σp 290 290 290 289
σM 38.6 41.1 49.8 61.1
〈M〉mix 523 523 523 520
σmix

M 37.8 40.3 48.8 60.0

PHENIX, PRC66 (2002) 024901, nucl-ex/0203015

〈M〉 and σp are practically constant in the “fiducial” centrality range
c = 0 − 30% (1)
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not the case in p − p collisions!
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Some statistics

Multiplicity n and the momenta p1, p2, . . . , pn vary randomly from event to event. The

probability of a given configuration is P (n)ρn(p1, . . . , pn), where P (n) is the

multiplicity distribution and ρn(p1, . . . , pn) is the conditional probability distribution of

occurrence of p1, . . . , pn provided we have multiplicity n. In general ρ depends

functionally on n. The normalization is

X
n

P (n) = 1,

Z
dp1 . . . dpnρn(p1, . . . , pn) = 1

The marginal probability densities are defined as

ρ(n−k)
n (p1, . . . , pn−k) ≡

Z
dpn−k+1 . . . dpnρn(p1, . . . , pn),

with k = 1, . . . , n − 1. These are also normalized to 1. We introduce

〈p〉n ≡
Z

dpρn(p)p, varn(p) ≡
Z

dpρn(p) (p − 〈p〉n)
2
,

covn(p1, p2) ≡
Z

dp1dp2 (p1 − 〈p〉n) (p2 − 〈p〉n) ρn(p1, p2).

The subscript n indicates that the averaging is taken in samples of a given multiplicity n
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For the variable M =
Pn

i=1 pi/n we find immediately

〈M〉 =
X

n

P (n)

Z
dp1 . . . dpnMρn(p1, . . . , pn) =

X
n

P (n)〈p〉n,

〈M2〉 =
X

n

P (n)

Z
dp1 . . . dpnM

2
ρn(p1, . . . , pn)

=
X

n

P (n)

n
〈p2〉n +

X
n

P (n)

n2

2
4 nX

i,j=1,j �=i

covn(pi, pj) + n(n − 1)〈p〉2
n

3
5

(1) allows us to replace 〈p〉n with 〈M〉 and σ2
p,n = 〈p2〉n − 〈p〉2

n with σ2
p,〈n〉,

σ2
M = σ2

p,〈n〉
X

n

P (n)

n
+

X
n

P (n)

n2

2
4 nX

i,j=1,j �=i

covn(pi, pj)

3
5
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In mixed events, by construction, particles are not correlated, hence the
covariance term vanishes and

σ2,mix
M = σ2

p,〈n〉
∑

n

P (n)
n

� σ2
p,〈n〉

(
1
〈n〉 +

σ2
n

〈n〉3 + . . .

)
(2)

where we have used the fact that P (n) is narrow and expanded
1/n = 1/[〈n〉 + (n − 〈n〉)] to second order in (n − 〈n〉)

centrality 0-5% 0-10% 10-20% 20-30%
〈n〉 59.6 53.9 36.6 25.0
σn 10.8 12.2 10.2 7.8
σp 290 290 290 289
σmix

M 37.8 40.3 48.8 60.0

σp

√
1

〈n〉 + σ2
n

〈n〉3 38.2 40.5 49.8 60.8

(2) works within 1%
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Since σp,〈n〉 is not altered by the event mixing procedure, subtracting the
last two equations yields

σ2
dyn =

∑
n

P (n)
n2

n∑
i,j=1,j �=i

covn(pi, pj) � 1
〈n〉2

〈n〉∑
i,j=1,j �=i

cov〈n〉(pi, pj) (3)

centrality 0-5% 0-10% 10-20% 20-30%
〈n〉 59.6 53.9 36.6 25.0
σM 38.6 41.1 49.8 61.1
σmix

M 37.8 40.3 48.8 60.0

σdyn

√〈n〉 60.3 ± 1.6 59.2 ± 1.5 59.8 ± 1.2 57.7 ± 1.1

σdyn ∼ 1/
√〈n〉 (within 2%, round-off errors) which together with (3)

places severe constraints on physics - not all particle can be correlated!
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STAR, hep-ph/0504031 ( dN
dη 〈ΔpiΔpj〉 � σ2

dyn〈n〉/Δη )
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Multiparticle clusters

� � � � � � � � 	 
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� � � 	 � � � 
 � � � 


The number of correlated pairs within a cluster is r(r − 1)/2. Some particles may be

unclustered, hence 〈Ncl〉r/〈n〉 = α. Then

σ2
dyn =

α(r − 1)

〈n〉 cov∗,

which complies to the scaling of σdyn. An immediate conclusion here is that α(r − 1)

cannot depend on 〈n〉 (in the fiducial centrality range) in order for the scaling to hold
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Can it be jets?

Jets (minijets) which have been proposed as a possible explanation of the experimental

data even at the considered soft momenta [PHENIX, PRL 93 (2004) 092301]. Jets, when

fragmenting, lead to clusters in the momentum space. The full covariance from jets is

then Ncl,jetj(j − 1)covj/〈n〉2, with Ncl,jet - number of clusters originating from jets, j

- number of particles in the cluster, and 2 covj - covariance per pair, Ncl,jetj - total

number of particles produced from jets. The commonly accepted estimate of the

dependence of Ncl,jetj on centrality is accounted for by RAA × Nbin

Ncl,jetj ∼ RAANbin =
〈n〉

Nbin〈n〉pp

Nbin ∼ 〈n〉,

which complies to the scaling of σdyn. We stress that this scaling follows just from the

presence of clusters, and is insensitive to the nature of their physical origin as long as one

imposes Ncl ∼ 〈n〉. When the above equation is used, the explanation of the data in

terms of (quenched) jets agrees with the cluster picture. However, the explanation of the

centrality dependence in terms of jets based solely on the above equation is insufficient

and inconclusive: any mechanism leading to clusters would do! Realistic microscopic

estimates of covj and j are necessary, including the interplay of jets and medium [current

status: Liu and Trainor, PLB 567 (2003) 184, Mitchell, ”Workshop on Correlations and

Fluctuations in Relativistic Nuclear Collisions”, MIT, 21-23 April 2005,

http://www.mit.edu/∼vaurynov/21april2005workshop]

pT -fluctuations 10



How strong are the correlations

a - detector efficiency, number of observed particles ∼ a, number of pairs
∼ a2. Thus

σ2
dyn =

r − 1
〈n〉full

cov∗ = a
r − 1
〈n〉obs

cov∗

cov∗ = σ2
dyn

〈n〉obs

a(r − 1)
.

For PHENIX a � 10%, which gives

cov∗ � 0.035 GeV2

(r − 1)
.

The natural scale set by σ2
p � 0.08 GeV2 (recall that | cov∗ |≤ σ2

p). For
r = 2 the value of cov∗ would assume 45% of the maximum possible
value. This is unlikely, as argued from model estimates presented below,
where cov∗ at most 0.01 GeV2. Thus a natural explanation of the above
number is to take a significantly larger value of r. The higher r, the easier
it is to satisfy the data even with small values of cov∗. “Lumped clusters”:
lumps of matter move at some collective velocities, correlating the
momenta of particles belonging to the same cluster
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Same for STAR

Very similar quantitative conclusions from the STAR data
[nucl-ex/0504031]. The measure used by STAR is just the estimator for
σ2

dyn. It is elementary to show

〈ΔpiΔpj〉 =
Nevent − 1

Nevent
σ2

M − 1
Nevent

Nevent∑
k=1

σ2
p

Nk
= σ2

dyn (1)

Assuming a = 0.75 we find

cov∗(r − 1) = 0.058, 0.043, 0.035, 0.014 GeV2

for
√

sNN = 200, 130, 62, 20 GeV

The value at 130 GeV is close to PHENIX. Significant beam-energy
dependence! This may be due to increase of the covariance per pair with
energy, and/or increase of the number of clustered particles
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Covariance from decay of resonances

cov∗
res =

R
d3p

R d3p1
Ep1

R d3p2
Ep2

δ(4)(p − p1 − p2)C
dNR
d3p

`
p⊥

1 −〈p⊥〉´ `
p⊥

2 −〈p⊥〉´
R

d3p
R d3p1

Ep1

R d3p2
Ep2

δ(4)(p − p1 − p2)C
dNR
d3p

dNR/d3p - resonance distribution from the Cooper-Frye formula - Cracow expansion,

p1, p2 - momenta of daughters, Ep - energy of the particle with momentum p, C - cuts

cov∗res [GeV2]

m [GeV]

Cancellations between contributions of various resonances are possible; Therminator -

negligible contribution of resonances to the pT correlations. (Of course, the “lumpy”

feature of the expansion was not implemented in the calculation)
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Thermal clusters

Emission from local thermalized sources: each element of the fluid moves with its

collective velocity and emits particles with locally thermalized spectra. The picture

refelects charge conservation within the local source [Bożek, WB, Florkowski, Acta Phys.

Hung. A22 (2005) 149].

cov
∗
i,j =

R
dΣμuμ

R
d3p1(p

⊥
1 − 〈p⊥〉)fu

i (p1)
R

d3p2(p
⊥
2 − 〈p⊥〉)fu

j (p2)R
dΣμuμ

R
d3p1fu

i (p1)
R

d3p2fu
j (p2)

fu
i (p) = (exp(p · u/T ) ± 1)−1 - boosted thermal distribution, u(x) -expansion

velocity, dΣμ - integration over the freeze-out hypersurface. Fix flow such that

〈M〉 = 554 MeV

T [MeV] 10 100 120 140 165 200

〈β〉 0.94 0.72 0.69 0.58 0.49 0.31

σ2
p [GeV2] 0.056 0.19 0.15 0.15 0.14 0.12

cov∗
ππ [GeV2] 0.027 0.011 0.0088 0.0063 0.0034 0.0006

Results depend strongly on temperature. At realistic thermal parameters the experimental

value of the covariance, 0.035 GeV2/(r − 1), cannot be accounted for unless the

number of (charged) particles belonging to a cluster is sizeable, at least 4 − 10
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Conclusion

In the fiducial centrality range:

1. Constant 〈M〉 and σp explain the value of σmix
M , which approximately scales with

1/〈n〉 (accuracy 1%)

2. The scaling of σ2
dyn with 1/〈n〉 (accuracy 2%) suggest the cluster picture of the

fireball

3. The magnitude of the observed σdyn can be easily achieved when several (4-10

charged) particles are present in clusters

4. Jets would just produce clusters, so it is impossible to prove or disprove their existence

based solely on the centrality dependence of the correlation data at soft/medium pT

5. The clusters may a priori originate from very different physics: jets, droplets of fluid

formed in the explosive scenario of the collision, or other mechanisms leading to

multiparticle correlations

6. Other authors have estimated effects of HBT correlations or elliptic flow, claiming

these are small
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Backup slides
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Inclusive distributions

The commonly used inclusive propability distributions are related to the
marginal probability distributions in the following way:

ρin(x) ≡
X

n

P (n)

Z
dp1 . . . dpn

nX
i=1

δ(x − pi)ρn(p1, . . . , pn) =
X

n

nP (n)ρn(x),

ρin(x, y) ≡
X

n

P (n)

Z
dp1 . . . dpn

nX
i,j=1,j �=i

δ(x − pi)δ(y − pj)ρn(p1, . . . , pn)

=
X

n

n(n − 1)P (n)ρn(x, y)

which are normalized to 〈n〉 and 〈n(n − 1)〉, respectively.
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Nbin vs. Nw
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Glauber Monte Carlo, σNN = 41 mb
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CERES
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Works! (errors large)
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Dependence on pmax
T
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ω =
σM

< M >
, FpT

=
ω data − ω mix

ω mix
∼ cov∗
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2σp
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