Charge balancing in heavy-ion collisions

Piotr Bożek and Wojciech Broniowski

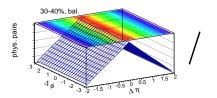
IFJ PAN & UJK

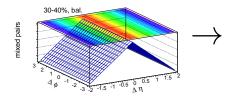
IX Polish Workshop on Relativistic Heavy-Ion Collisions, UJ, 24-25.11.2012

[based on PRL 109 (2012) 062301 and arXiv:1211.0845]

Correlations

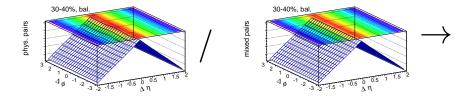
$$R_2(\Delta \eta, \Delta \phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta \eta, \Delta \phi)}{N_{\rm mixed}^{\rm pairs}(\Delta \eta)}$$

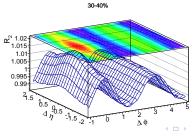




Correlations

$$R_2(\Delta \eta, \Delta \phi) = \frac{N_{
m phys}^{
m pairs}(\Delta \eta, \Delta \phi)}{N_{
m mixed}^{
m pairs}(\Delta \eta)}$$

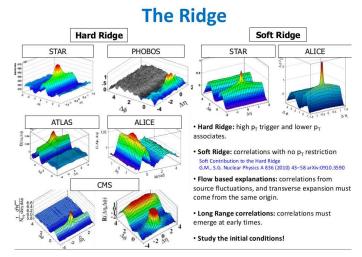




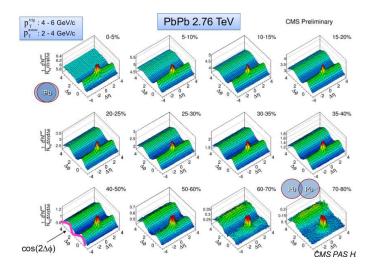
Sources of correlations

- ullet jets o central peak (same jet), away-side ridge (back-to-back jets)
- collective harmonic flow → near- and away-side ridges
- charge balancing → central peak, shape of the near-side ridge
- resonance decays → away-side ridge
- Bose-Einstein → central peak
- Coulomb, final-state, ...

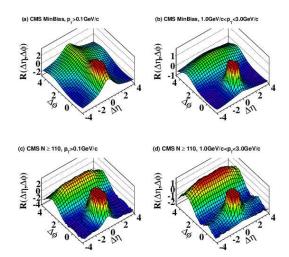
Ridges found everywhere!



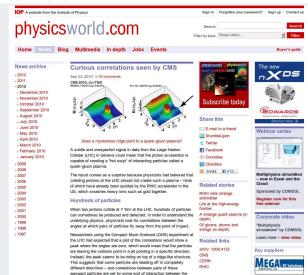
Pb-Pb



р-р



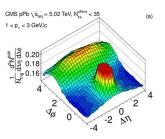
Physics World

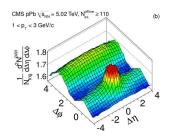


particles when they were created in the collision.

One possible interpretation of the ridge is that the collision creates a dense fluid of many quarks and gluons = a quarks durin plasma =

p-Pb





(released last month - see Piotr Bożek's talk)

Flow

$$\rho_{2}^{\text{phys}}(\Delta\phi, \Delta\eta) = \frac{1}{2\pi} \int d\phi_{1} d\phi_{2} d\eta_{1} d\eta_{2} \rho_{1}(\phi_{1}, \eta_{1}) \rho_{1}(\phi_{2}, \eta_{2}) \delta_{\Delta\phi - \phi_{2} + \phi_{1}} \delta_{\Delta\eta - \eta_{2} + \eta_{1}} + \rho_{c}(\Delta\phi, \Delta\eta)$$

$$\rho_{2}^{\text{mixed}}(\Delta\eta) = \frac{1}{(2\pi)^{2}} \int d\Psi d\phi_{1} d\phi_{2} d\eta_{1} d\eta_{2} \rho_{1}(\phi_{1}, \eta_{1}) \rho_{1}(\phi_{2} - \Psi, \eta_{2}) \delta_{\Delta\phi - \phi_{2} + \phi_{1}} \delta_{\Delta\eta - \eta_{2} + \eta_{1}}$$

$$\rho_{1}(\phi, \eta) = n(\eta) [1 + 2 \sum_{n} v_{n}(\eta) \cos(n\phi - \Psi_{n})$$

$$R_{2} = \frac{\langle \int d\eta_{1} d\eta_{2} n(\eta_{1}) n(\eta_{2}) \left[1 + 2 \sum_{n} v_{n}(\eta_{1}) v_{n}(\eta_{2}) \cos(n\Delta\phi) \right] \delta_{\Delta\eta - \eta_{2} + \eta_{1}} + \rho_{c} \rangle_{\text{events}}}{\langle \int d\eta_{1} d\eta_{2} n(\eta_{1}) n(\eta_{2}) \delta_{\Delta\eta - \eta_{2} + \eta_{1}} \rangle_{\text{events}}} =$$

$$= 1 + 2 \sum v_{n}^{2} (\Delta\eta) \cos(n\Delta\phi) \quad \text{(includes fluctuations and nonflow)}$$

spectra and flow coefficients as functions of η yield $v_n^2(\Delta\eta)$ only if $\rho_c=0$ e-by-e \to presence of odd harmonics from fluctuations also for symmetric collisions

Fluctuations

Our approach ("Standard Model of heavy-ion collisions"): initial \rightarrow hydro \rightarrow statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

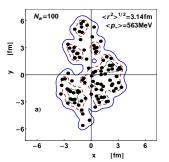
Fluctuations

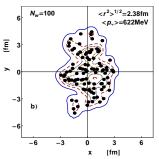
Our approach ("Standard Model of heavy-ion collisions"): initial \rightarrow hydro \rightarrow statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

For A-A collisions the local charge conservation (balancing) very important for 2-particle correlations \rightarrow explanation of bulk of the data for $\Delta\eta<\sim 1$, $\Delta\phi<\sim 1$ – explanation of the "puzzling nature" of the near-side ridge \rightarrow late charge separation

Initial fluctuations in the Glauber approach





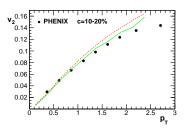
Two typical configuration of wounded nucleons in the transverse plane generated with GLISSANDO, isentropes at $s=0.05,\,0.2,\,$ and 0.4 GeV $^{-3}$

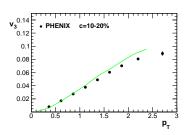
(taken as is, no need to talk about hotspots, tubes, etc.)

Hydrodynamics [Bożek]

3+1D viscous event-by-event hydrodynamics, tuned to reproduce the one-body **RHIC** data [Bożek 2012] standard set of parameters:

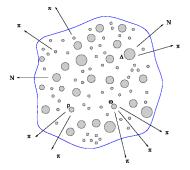
 $au_{\rm init}=0.6$ fm/c, $\eta/s=0.08$ (shear), $\zeta/s=0.04$ (bulk), $T_f=150$ MeV sample results \to it works for one-body observables





solid: e-by-e, dashed: averaged initial condition

Final fluctuations

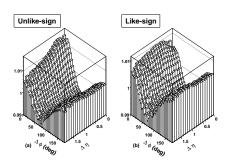


Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR)

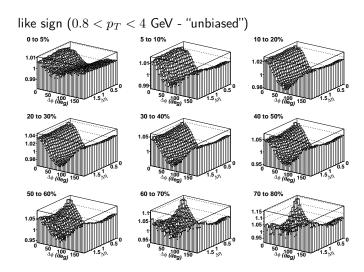
+ transverse-momentum conservation approximately imposed

Star data, 2007

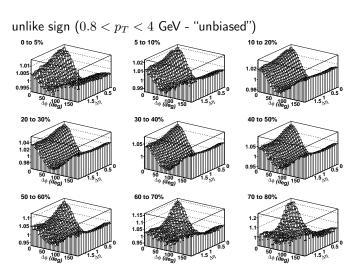
 $(0.8 < p_T < 4 \text{ GeV}$ - "unbiased", HBT peak removed)



STAR data, 2008

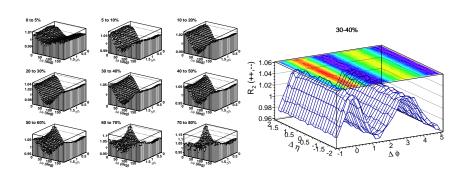


STAR data, 2008



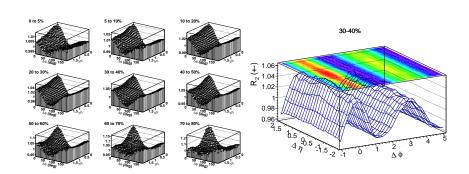
STAR vs. model

(like sign, $0.8 < p_T < 4$ GeV, model unbalanced)



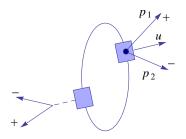
STAR vs. model

(unlike sign, $0.8 < p_T < 4$ GeV, model unbalanced)



Charge balancing (from resonance decays and "direct")

transverse-plane view of the expanding system at freeze-out

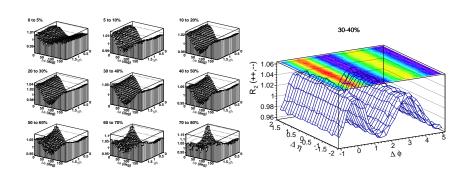


direct balancing: particle-antiparticle pair emitted from the neutral hydrodynamic medium at freeze-out from the same space-time point, e.g., $\pi^+\pi^-$, K^+K^- , $p\bar{p}$, ..., $\Delta^0\bar{\Delta}^0$... resonances also contribute special kind of clusters

many ways to modify/improve

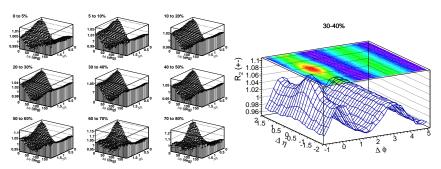
STAR vs. model

(like sign, $0.8 < p_T < 4$ GeV, balanced)



STAR vs. model

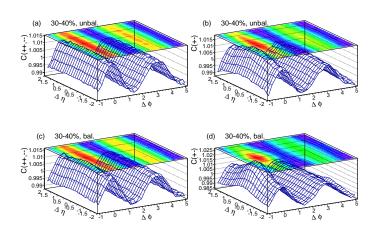
(unlike sign, $0.8 < p_T < 4$ GeV, balanced)



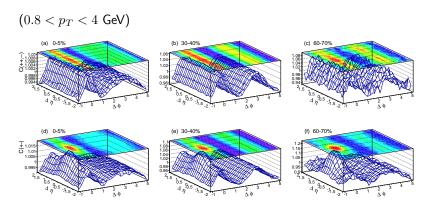
(correct "offsets" - compare to Takahashi et at. 2009, Sharma et al. 2011)

Role of balancing

$$(0.2 < p_T < 2 \text{ GeV}, C = R_2)$$



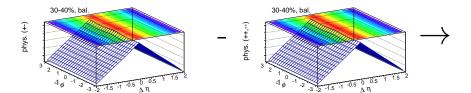
3 centralities



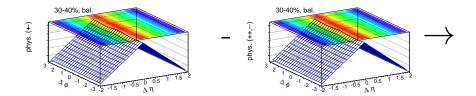
Balancing effect relatively strongest for central and peripheral collisions, as in the experiment

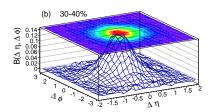
$$B(\Delta\eta,\Delta\phi) = \frac{\langle \ N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

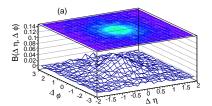


$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

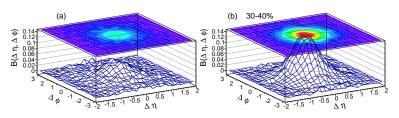




Crucial role of charge balancing



Crucial role of charge balancing



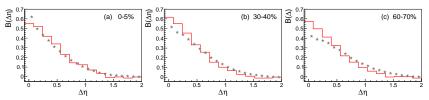
small (resonance decays only)

big (direct balancing)

balancing + flow \to collimation important non-flow effect, a way to look at the data (flow effects in correlations \equiv obtainable by folding the single-particle distributions containing flow)

Balance functions in relative pseudrapidity $\Delta \eta$

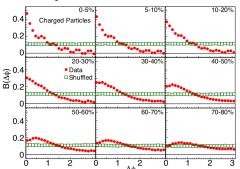
Marginal distribution of the above 2D function: the charge balance function in $\Delta\eta$



comparison to the STAR data

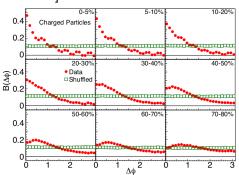
Balance functions in relative azimuth $\Delta\phi$

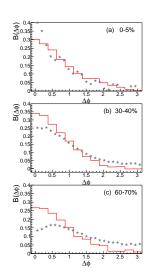
[STAR 2010]



Balance functions in relative azimuth $\Delta\phi$

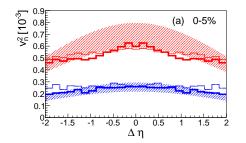
[STAR 2010]





$$v_n^2(\Delta \eta)$$

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

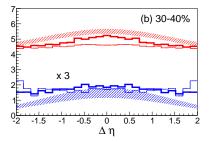


comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

$$v_n^2(\Delta \eta)$$

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

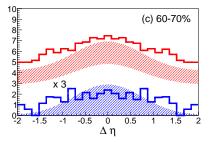


comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

$$v_n^2(\Delta \eta)$$

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

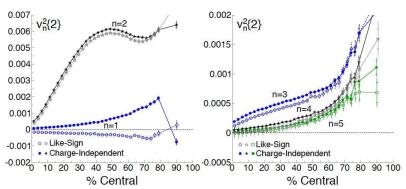


comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

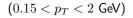
balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

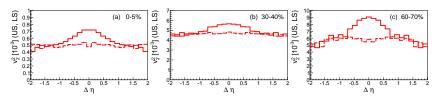
STAR 2011

Paul Sorensen at QM2011



Charge-dependence of $v_n^2(\Delta \eta)$





solid: unlike, dashed: like

Conclusions

- E-by-e hydro in semi-quantitative agreement with the (soft) data for 2-particle 2D correlations from RHIC and LHC for A-A and p-A collisions
- Charge balancing combined with flow explains the shape of the same-side ridge for $\Delta\eta<\sim 1$ and $\Delta\phi$ major non-flow effect
- \blacksquare The fall-off of the flow coefficients $v_n^2(\Delta\eta)$ reproduced
- Charge balancing increases $v_n^2\{2\}$ by a few % and splits the like-sign and unlike-sign combinations
 - \rightarrow late charge separation