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Lecture 1

WB (IFJ) Ultrarelativistic collisions IFJ 2020 2 / 142



Foreword
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Feynman: Scattering of protons on protons is like colliding Swiss watches
to find out how they are built.
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Studying the hydrodynamics of water by shooting at a watermelon!
What is the equation of state, sound velocity, viscosity . . . ?
What was the shape before destruction?

Not a completely impossible task . . .

Note that in the explosion some matter is ejected backwards!
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Little bangs
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Three stages of the “Standard Model” of Little Bangs

partons hydrodynamization quark-gluon plasma freeze-out hadrons

time: ∼1 fm/c ∼10 fm/c

These rather basic lectures are given for an audience that is familiar with
many aspects of the field, but I hope that nevertheless they will be useful.
I am open to suggestions on the way what to cover in a greater
detail.
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Introduction
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Some basic kinematics
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Coordinates of 4-vectors

Consider any 4-vector (take momentum for definiteness)

pµ = (p0, ~p) = (E, pT cosφ, pT sinφ, p‖)

(energy, transverse momentum, azimuthal angle, longitudinal momentum)
with

p‖ = p cos θ, pT = p sin θ, pµpµ = m2 ≥ 0, E2 = m2 + p2

(p = |~p|, polar angle, mass, time-like 4-vector).
A set of 4 variables is complete, e.g., {m, p, φ, θ}, or {E, pT , φ, p‖}.
Quite generally, one may pass to another set of coordinates, i.e.,

(E, p‖)→ (E(c1, c2), p‖(c1, c2))

with the functions chosen in such a way that the whole (relevant) space is
covered.
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Rapidity

Most important case of such a transformation:

E = mT cosh y, p‖ = mT sinh y

Immediately tanh y = p‖/E

(recall E = γm, ~p = ~vγm, γ = 1√
1−v2/c2

, hence tanh y = v/c)

The transverse mass mT can be obtained from

m2 = pµpµ = E2 − p2
‖ − p

2
T = m2

T (cosh2 y − sinh2 y)− p2
T = m2

T − p2
T ,

hence m2
T = m2 + p2

T .
Inverse transformation:

y = arctanh
p‖

E
=

1

2
log

E + p‖

E − p‖
, mT =

√
E2 − p2

‖.
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Rapidity cont.
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Hyperboloids E2 − p2
‖ = m2

T and straight lines with slope tanh y, light
cone E = p‖, high resolution in y near the light cone. Lowest value for mT

is, of course, m. Completeness: all accessible space is covered with the new
coordinates.
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Forward/backward resolution
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The curve y = arctanh p‖/E. As much is happening in the forward
(E/p‖ → 1) or backward (E/p‖ → −1) direction, passing to y provides the
necessary resolution.
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Phase space

Integration over the phase space (of a single particle on the mass shell) involves
the Lorentz-invariant measure, I =

∫
d4pδ(p2 −m2)θ(p0)f(p). Passing to

(y,mT ) variables we have dp0dp3 = |J |dy dmT , where the Jacobian is

J =

∣∣∣∣ dp0/dmT dp0/dy
dp3/dmT dp3/dy

∣∣∣∣ =

∣∣∣∣ cosh y mT sinh y
sinh y mT cosh y

∣∣∣∣ = mT

Substituting and integrating over mT , and using δ(g(x)) =
∑
i δ(x− zi)/|g′(zi)|

I =

∫
d2pT dy dmTmT δ(m

2
T − p2

T −m2)θ(mT )f(p)

=

∫
d2pT dy dmTmT

δ(mT −
√
m2 + p2

T )

2mT
f(p)

=

∫
1
2d

2pT dy f(pT , y)
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Phase space 2

Simpler derivation:

I =

∫
dp0d

3pδ(p2
0 − p2

T −m2)θ(p0)f(p) =

∫
d3p

2E
f(p)

=

∫
d2pT

dp3

2E
f(p), E =

√
m2 + p2

We have (for fixed pT ) dp3 = mT d(sinhy) = mT coshy dy, hence again

I =

∫
1
2d

2pT dy f(pT , y)
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Boost invariance

Lorentz transformation (system boosted along the z-axis with velocity
v/c = tanh ζ):

E → E cosh ζ + p‖ sinh ζ

p‖ → p‖ cosh ζ + E sinh ζ

Then
E → mT cosh y cosh ζ +mT sinh y sinh ζ = mT cosh(y + ζ)

p‖ → mT sinh y cosh ζ +mT cosh y sinh ζ = mT sinh(y + ζ)

y → y + ζ

(rapidities are additive). Thus the measure d2pT dy is invariant with respect to
boosts along z. In particular, the spectrum

d3N

d2pT dy
(pT , y)

is simply shifted in the y variable by ζ, with no change of shape.
The above additivity is the main reason to use the rapidity variable y!
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Going between Lab and CM frames

Mandelstam’s invariant s = (p1 + p2)2 = (E1 + E2)2 − (~p1 + ~p2)2.
In collider experiments one typically quotes

√
sNN , which relates to nucleons

from two different projectiles. In CM frame of this NN system,

sNN = (E1 + E2)2 = [mN (cosh yCM
b + cosh(−yCM

b ))]2 = [2mN cosh yCM
b ]2,

hence the rapidity of the beam in CM is

yCM
b = arccosh

(√
sNN

2mN

)
(the other beam has −yCM

b ). Going to the Lab frame means carrying a boost
such that one nucleon is at rest, i.e. a boost with rapidity yb. Then

E1 = EN,Lab = ELab/A = m cosh(yLab
b ), yLab

b = 2yCM
b , E2 = m,

where A is the mass number. Since cosh(2α) = 2 cosh2 α− 1, or
cosh(2 arccosh z) = 2z2 − 1, we get

ELab/A =
sNN
2mN

−mN ,
√
sNN =

√
2mN

√
ELab/A+mN
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Examples

Pb+Pb at SPS, ELab = 158 GeV A

mN = (938.27 + 939.57)/2 GeV ' 939 MeV

√
sNN =

√
2mN

√
158 GeV +mN ' 17.3 GeV, yLab

b ' 5.8

p+p at LHC,
√
sNN = 14 TeV

ELab =
(14 TeV)2

2mp
−mp ' 1× 105 TeV, yCM

b = 9.6
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Pseudorapidity

Similar game:

p = |~p| = pT cosh η, p‖ = pT sinh η

Then tanh η = p‖/p. In the polar representation

p‖ = p cos θ, pT = p sin θ

hence

η = arctanh cos θ, θ = arccos tanh η

η =
1

2
log

p+ p‖

p− p‖
, pT =

√
p2 − p2

‖.

Remark: for m = 0 we immediately have η = y
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Pseudorapidity 2
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Large resolution in η for very forward or backward motion
y = log

(
2
θ

)
+O

(
θ2
)
, π2 − θ +O

((
θ − π

2

)2), − log
(

2
π−θ

)
+O

(
π − θ)2

)
,

Homework
- Plot the analog of the figure from slide 14 for the present case of pseudorapidity
- Derive the above expansion
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Pseudorapidity vs rapidity

From previous expressions we readily get

η = 1
2 log

√
m2
T cosh2y −m2 +mT sinhy√

m2
T cosh2y −m2 −mT sinhy

y = 1
2 log

√
p2
T cosh2η +m2 + pT sinhη√
p2
T cosh2η +m2 − pT sinhη

Because p‖ = mT sinh y = pT sinh η, then mT cosh y dy = pT cosh η dη, hence

dy

dη
=

p

E
=

√
p2
T +m2

T sinh2 y

mT cosh y
=

pT cosh η√
m2
T + p2

T sinh2 η
(≤ 1)
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dy/dη

r = pT /mT

r=1
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Pseudorapidity vs rapidity 2

With r = pT /mT we can rewrite

η = arcsinh(1/r sinh y) = 1
2 log

√
sinh2y + r2 + sinhy√
sinh2y + r2 − sinhy

y = arcsinh(r sinh η) = 1
2 log

√
sinh2η + 1/r2 + sinhη√
sinh2η + 1/r2 − sinhη

dy

dη
=

√
r2 + sinh2 y

cosh y
=

cosh η√
1/r2 + sinh2 η

Note that the symmetry y ↔ η, mT ↔ pT (r ↔ 1/r) is explicit.
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Pseudorapidity vs rapidity 3
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|y| ≤ |η| → spectra are broader in η than in y
Asymptotically, y = η + sgn (η) log r (dashed lines)
Note that since r = pT /mT , the relation depends on pT and m.
Experimentally, to pass from η to y one needs to identify particles.
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Mid-pseudorapidity depletion

Since dy/dη ≤ 1 (equality for m = 0), possibility of minimum at η = 0 (see 3
slides up). Generally, what is extracted experimentally are the double spectra in
pT and y. Obviously,

d3N

d2pT dη
=

d3N

d2pT dy

dy

dη

At η = 0:

dN

dη

∣∣∣∣
η=0

≡
∫
d2pT

d3N

d2pT dη

∣∣∣∣
η=0

=

∫
d2pT

d3N

d2pT dy

dy

dη

∣∣∣∣
y=0

≤
∫
d2pT

d3N

d2pT dy

∣∣∣∣
y=0

≡ dN

dy

∣∣∣∣
y=0

dN
dη

∣∣∣
η=0
≤ dN

dy

∣∣∣
y=0

(equality for m = 0)
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Curvature at mid-pseudorapidity - minimum possible

Let j(y) ≡ dy/dη. Then from the chain rule

d2

dη2

d3N

d2pT dη
= j(y)

d

dy
j(y)

d

dy
j(y)

d3N

d2pT dy

= (j(y)j′(y)2 + j(y)2j′′(y))
d3N

d2pT dy
+ 3j(y)2j′(y)

d4N

d2pT d2y
+ j(y)3 d5N

d2pT d3y

Since j(y) is symmetric, at midrapidity j′(0) = 0. Furthermore, j(0) = pT /mT

and j′′(0) = pT /mT +mT /pT . Combining these,

d2

dη2

d3N

d2pT dη

∣∣∣∣
η=0

=
m2pT
m3
T

d3N

d2pT dy

∣∣∣∣
y=0

+
p3
T

m3
T

d2

dy2

d3N

d2pT dy

∣∣∣∣
y=0

and, upon integration over d2pT ,

d2

dη2

dN

dη

∣∣∣∣
η=0

=

∫
d2pT

m2pT
m3
T

d3N

d2pT dy

∣∣∣∣
y=0

+

∫
d2pT

p3
T

m3
T

d2

dy2

d3N

d2pT dy

∣∣∣∣
y=0

positive typically negative (if d3N/d2pT dy max. at y = 0)
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Mid-pseudorapidity depletion in a schematic model

Homework
Check the formulas from the previous slide and discuss the final result, in
particular its dependence on m.

Now consider any value of η. For the sake of example, we take an ansatz
factorized in y − pT (in reality need not be so)

d3N

d2pT dy
=

d3N

d2mT dy
(mT , y) = f(mT )

dN

dy
(y).

with dN/(dymT dmT ) = A exp(−y2/2σ2) exp(−mT /λ), σ = 2.5
Typically, f(mT ) = Ae−mT /λ, with λ a parameter. Then

dN

dη
= A

∫
d2mT e

−mT /λ
dy

dη
(η,mT ,m)

dN

dy
(η,mT ,m)
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Mid-pseudorapidity depletion in a schematic model 2
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Depletion, possible 2 maxima, and broadening!
Effect stronger as (averaged) pT /mT (or λ/m) decreases, or m increases
Of course, normalization is preserved,

∫
dη dNdη =

∫
dy dNdy

Homework – carry out numerical integration (Mathematica, python)
Do an example with some other dependence of the spectrum on mT and y.
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Space-time rapidity ηPS and proper time τ

Exactly the same construction as for (4-momentum) rapidity but with the
4-coordinates (t, x, y, z)

t = τ cosh ηPS , z = τ sinh ηPS

or

ηPS = 1
2 log

t+ z

t− z
, τ =

√
t2 − z2

Important in covariant description of dynamics
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Hints for Quark-Gluon Plasma
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QGP from lattice QCD

At high temperatures the thermal motion is so high, that also the momenta
transferred are large and hadrons are melted into quarks and gluons. An
early expectation was that weakly-interacting quark-gluon plasma (QGP)
should be formed. As seen from the lattice QCD, this is not really the case
at accessible temperatures!
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[Bazavov et al., PRD 80(2009)014504, arXiv:0903.4379]

QGP → sQGP – strongly interacting QGP. But things happen!
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Reminder: the Stefan-Boltzmann law (ε, P ∼ T 4)
With the grand-canonical ensemble the pressure is

P = −Ω(T, V, µ)/V = ±γT
∫

d3k

(2π)3
log
(

1± e−(E(k)−µ)/T
)

+ fermions, − bosons, E(k) =
√
m2 + k2, V - volume, T - temperature, µ - chemical

potential, γ - degeneracy factor.
For m = 0 and µ = 0: P = γ π

2

90
T 4 for bosons and P = γ 7

8
π2

90
T 4 for fermions,

whereas energy density ε ≡ E/V = 3P and entropy density s = (ε+ P )/T = 4P/T .

QGP (gluons and quarks+antiquarks)
γ = 8× 2(color× spin) + 7/8× 2× 3× 2×Nf ([q + q̄]× (color× spin× flavor)
Nf = 2 and 3: P/T 4 =' 4.06 and ' 5.21, respectively (+ bag constant in some
models)

s ' 14/fm3 for T = 175 MeV

Noninteracting massive pions

P/T 4 = γπ
∑∞
k=1

m2K2( km
T )

2π2kT2 , with γπ = 3

A dramatic growth of the number of degrees of freedom, as seen on the lattice!
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Modified Bessel function of rank 2

It will appear frequently in thermal analyses . . .
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Gas of pions and kaons vs QGP

Homework
Derive P for the noninteracting pion gas

SB

pions
pions+kaons
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We see a huge jump in p/T 4, but more hadrons contribute (see later on)
WB (IFJ) Ultrarelativistic collisions IFJ 2020 36 / 142



Experimental signatures of QGP

Harmonic flow, radial flow (collectivity)
Jet quenching
Strangeness enhancement
J/ψ production
. . .
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Phase diagram of QCD

[from D. P. Menezes]
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Lecture 2
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Basics of scattering
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Classical scattering

[recall your QM class!]
Differential cross section dσ

dΩ

[Wiki]

Total cross section: σ =
∫
dΩ dσ

dΩ (QM: dσ/dΩ = |f(Ω)|2)
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Experimental determination

dσ(Ω) =
dN(Ω)

j

dN(Ω) – number of particles scattered per unit time into [Ω,Ω + dΩ]
j – number of incident particles passing per unit time through per unit area
perpendicular to the beam (incident flux)
Another interpretation following from the above definition:

σ =
probability of transition

density of scatterers per transverse area

For a single scatterer it is thus the characteristic area attributed to it
Yet another way:

σ =
probability of transition per unit of time

density of scatterers per volume× velocity

[standard stuff]
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Quantum field theoretic definition – full truth :)

Homework
Digest the formulas from the previous slide

For the process a+ b→ 1 + 2 + . . . n:

dσ(a+ b→ 1 + 2 + . . . n) =
(2π)4δ4(pa + pb − p1 − p2 − · · · − pn)

vab 2Ea 2Eb

× |〈papb | T | p1p2 . . . pn〉|2
n∏
i=1

d3pi
(2π)32Ei

momentum conservation / flux × transition rate × phase space of the final state

Invariantly, vabEaEb =
√

(papb)2 − (mamb)2

The total cross section is σ = 1
S

∫
dσ, where S is the symmetry factor accounting

for identical particles in the final state
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Examples

Classical elastic scattering on a hard sphere: dσ
dΩ = R2/4, σ = πR2

QM elastic sc. on a hard sphere, low energy limit: dσdΩ = R2, σ = 4πR2

– high energy limit: σ = 2πR2 (wave nature, diffraction)

Ratherford scattering (Lab): dσ
dΩ =

(
Z1Z2αQED

4Ekin sin2 θ
2

)2

, σ =∞
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dσ/dΩ uniform in Ω plotted vs pseudorapidity
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Homework
Recreate the plots from this and the next slide
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dσ/dη uniform in η ∈ [−2, 2] plotted vs θ
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Message:
Cross section flat in η corresponds to very forward/backward physics!
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Spectra in pseudorapidity, pp collisions, UA5 Collaboration
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Units

1 fm = (femtometer, fermi) = 10−15 m
1 mb = 10−31 m2 = 10−1 fm2

Natural units:
~=1, c = 1, kB = 1
fm GeV=' 1

0.1973
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Participants and spectators

Au+Au collision at RHIC
(view along the beam)
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all nucleons

Participants – nucleons that collide
Spectators– nucleons that fly by
without colliding

Participants may collide elastically and
inelastically (i.e., producing particles). In
the latter case they are referred to as
wounded nucleons

Roughly, the min. transverse distance (impact parameter) d between the colliding
nucleons must satisfy the geometric condition πd2 . σinel

NN (inelastic cross
section)

WB (IFJ) Ultrarelativistic collisions IFJ 2020 50 / 142



Participants and spectators

Au+Au collision at RHIC
(view along the beam)
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Participants – nucleons that collide
Spectators– nucleons that fly by
without colliding

Participants may collide elastically and
inelastically (i.e., producing particles). In
the latter case they are referred to as
wounded nucleons

Roughly, the min. transverse distance (impact parameter) d between the colliding
nucleons must satisfy the geometric condition πd2 . σinel

NN (inelastic cross
section)
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Quantiles

A statistical sample with some characteristics (e.g., people with height),
can be divided into quantiles:

In collision experiment the same methodology: events have some
characteristics: multiplicity of produced hadrons, response of various
detectors, . . . One can cut the sample of events into quantiles according to.
a chosen feature (e.g., multiplicity), here called centrality classes.
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Centrality as quantiles of multiplicity

geometric intuition [fig. from J. Jia]

in pp – activity
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Centrality as quantiles of a forward detector

Not one definition! Depends on the feature chosen (which detector used).
Analogy: for people, one an arrange with height or with weight. Result not the
same (they would be exactly the same if weight were strictly proportional to
hight, with no fluctuations)

[ALICE, arXiv:1306.3130]
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Centrality vs impact parameter

From geometry, Nch decreases with b, as the overlap region is smaller. If this is
strictly monotonic (i.e, no fluctuations), centrality classes for both features would
be the same. Then (see below)

c ' πb2

σABinel

' b2

(RA +RB)2
,

where RA and RB are the radii of the nuclei
[WB, Florkowski, PRC 65(2002)024905]

To see this consider an archery competition: probability ∼ 2πbdb → cumulative
distribution function:

c(b) =

∫ b

0

P (b′)db′ =
b2

b2max

=
b2

(RA +RB)2
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Homework:
Take the human data from [link] and generate histograms for distributions
and cumulative distributions according to 1) heigh 2) weight. Determine
"centrality classes" for the two cases and compare the results.
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Fireball
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An ALICE event

In a single relativistic heavy-ion collision thousands of particles are formed,
observed (and identified)
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Multiplicities

Growth with
√
sNN , but not superposition of p+p

[Aamodt et al. (ALICE) PRL 105(2010)252301]

Npart – number of participating nucleons
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Spectra in pseudorapidity

Kinematic range in rapidity is ∼ ybeam = arccosh[
√
sNN/(2mN )]

(' 8 at 2.76 TeV, '5.4 at 200 GeV)
As already said, for identified particles y is typically used. Recall that η
distributions are wider and lower in the center.

1600 of charged hadrons per unit of η! (∼ 2400 for all hadrons)
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Statistical (thermal) model of hadronization

[Fermi, Pomeranchuk, Hagedorn, Kapusta, Koch, Muller, Rafelski, Sollfrank, Heinz,
Becattini, Braun-Munzinger, Stachel, Redlich, Cleymans, Gazdzicki, ...]

Large multiplicities → Large densities → statistical description – the higher
collision energies, the better!

By counting all the particles we cannot obtain the temperature T , as we do not know the
volume V . Idea: look at identified hadron multiplicities and take ratios to divide out V .

For the simplified case of the Boltzmann distribution (~ = kB = c = 1)

N=V

∫
d3p

(2π)3
e−(E−µ)/T = V eµ/T

∫
d3p

(2π)3
e−
√
m2+p2/T =

V T 3

2π2
eµ/T

(m
T

)2
K2

(m
T

)
In chemical equilibrium

µ = BµB + SµS + I3µI3
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Bessel functions

Modified Bessel function of the second kind

0 1 2 3 4 5
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/T
)2
K
2
(m

/T
)

higher m (at fixed T ) → lower yield of a species
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Chemistry

For boost-invariant systems (approximately satisfied at midrapidity) the
ratio of abundances of species i and j is

dNi/dy

dNj/dy
=
Ni
Nj
' 2Ji + 1

2Jj + 1
e(µi−µj)/T m

2
iK2(mi/T )

m2
jK2(mj/T )

where µi = BiµB + SiµS + I3,iµI3 . For instance (hadron symbols here denote their
multiplicities)

p

p̄
= e2µB/T ,

K+

K−
= e2µS/T ,

p p̄

π+π−
=

(
1

2

m2
pK2(mp/T )

m2
πK2(mπ/T )

)2

3 equations allow to find the thermal parameters T , µB , µS .

In practice µS and µI3 are determined by requiring that the strangeness of the system is
zero, and the ratio of the baryon number to the electric charge densities is the same as
in the colliding nuclei → solve overdetermined system for many ratios in the χ2 sense.
Actually, one needs to include resonance decays (see the following) for the analysis to be
realistic.
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Sensitive thermometer

µ-independent combination
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Resonance decays

Very important: ∼75% of pions come from resonance decays (!) Although
resonances are heavier, hence suppressed, they are very numerous. Their
role increases with larger temperatures. Cascades possible.
SHARE, THERMUS - publicly available codes carrying out statistical hadronization with
decays of all resonances from Particle Data Tables
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Example: Au+Au at RHIC,
√
sNN = 130 GeV

Au+Au model experiment
Tchem [MeV] 165±7
µBchem [MeV] 41±5
µSchem [MeV] 9
µIchem [MeV] -1
χ2/n 0.97
π−/π+ 1.02 1.00± 0.02 , 0.99± 0.02
p/π− 0.09 0.08± 0.01

K−/K+ 0.92
0.88± 0.05, 0.78± 0.12
0.91± 0.09, 0.92± 0.06

K−/π− 0.16 0.15± 0.02
K∗0/h

− 0.046 0.060± 0.012

K∗0/h
− 0.041 0.058± 0.012

p/p 0.65
0.61± 0.07, 0.54± 0.08
0.60± 0.07, 0.61± 0.06

Λ/Λ 0.69 0.73± 0.03

Ξ/Ξ 0.76 0.82± 0.08

[Florkowski, WB, Michalec, Acta Phys. Polon. B33 (2002) 761]
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RHIC success

[Andronic et al., PLB 697(2011)203, arXiv:1010.2995]
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[A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561 (2018) 321]
(note, however, a 50% or so discrepancy for p and p̄)
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Yields of light nuclei – "Snowflakes in hell"

9 orders of magnitude!
But:

Fundamentally not possible to understand the production of the light
nuclei (albeit described) in the statistical hadronization model. Too
weakly bound to achieve thermal equilibrium during the fireball’s
lifetime. Too large compared to the inter-particle spacing.
Recent quantitative and detailed discussion: [Y. Cai, T. D. Cohen,
B. A. Gelman, Y. Yamauchi, PRC 100 (2019) 2, 024911,
arXiv:1905.02753]
Alternative approach: coalescence, see [S. Bazak, S. Mrówczyński,
Mod. Phys. Lett. A33 (2018) 1850142]

Open problem!
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T -µB diagram – Cleymans-Redlich curve
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Phase diagram of QCD

[from D. P. Menezes]
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Expanding and cooling fireball

Working scenario:
Due to huge density, a fireball is formed (QGP), which expands
(nothing to hold it) and thus cools down.
At some temperature Tf a phase transition (more precisely: crossover)
occurs to the hadronic phase.
The hadron "soup" must include all resonances – this has a huge
effect at Tf ∼ 160 MeV.
After the freeze-out, the hadrons may still rescatter, resonances decay,
and finally the stable particles reach detectors.
The proton puzzle, the "snowflakes in hell" question, . . .
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Hagedorn spectrum

Exponential growth of the density of states:

ρ(m) = f(m)em/TH , N(m) =
∑
i

γiθ(m−mi)

[WB, Florkowski, Glozman, PRD 70(2004)117503]

Limiting temperature: the temperature of the system cannot surpass TH ,
as then the partition function becomes infinite (pre-QCD considerations)
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Hadron resonance gas (HRG) vs lattice QCD

For temperatures below the cross-over the thermodynamic functions are expressed
via sums over all hadronic resonances. The pressure is

P (T, µB , µS , µI3) = ±T
∑
i

(2Ji + 1)

∫
d3k

(2π)3
log

(
1± e−

[√
m2

i +k2−µi

]
/T
)

baryonic susceptibility χBB = ∂2P/∂µ2
B

[Lo, Marczenko, Redlich, Sasaki, Eur.Phys. J. A52 (2016) 235]
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Other effects

Homework
Derive the explicit formulas for the baryon density nB = ∂P (T, µB)/∂µB
and for χBB = ∂2P (T, µB)/∂µ2

B in HRG. Plot the contributions of
nucleons and antinucleons as a function of T . At the LHC you can take
µB = 0.

To satisfy the baryon number and strangeness conservation laws →
canonical ansatz
To satisfy the energy conservation → microcanonical ansatz - relevant
for systems with small numbers of particles
Short-range repulsion, excluded volume
Incomplete equilibrium (Rafelski’s fugacity factors)
Strangeness enhancement
Hierarchy of freeze-outs, based on hierarchy of cross sections
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Off mid-rapidity

µi depend on the spatial rapidity α‖ = 1
2 log

(
t+z
t−z

)
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Summary of thermal approach
Dense system with numerous collisions

Estimate: after freeze-out typically one collision per particle (as it should be)

Thermal and chemical equilibrium (at FO) explain the hadron abundances

The embarrassing success of light (hyper)nuclei production

Resonances crucial, HRG

HRG compares reasonably well to lattice QCD
The system (at least near the end of the evolution) is close to thermal and
chemical equilibrium
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Lecture 3
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Expansion and flow

The key concept of the approach to collectivity

Flow (and jet quenching) are the two major discoveries of the
ultra-relativistic heavy-ion program!
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Inevitability of expansion

No container! → the fireball expands (and cools down)
Think in terms of gas/fluid - dense medium, high pressure, short mean-free
path, multiple rescattering

Flow is generic to a system with copious rescattering: hydro, transport, . . .

Obviously, the expansion affects the momentum spectra, as the velocity of
the fluid element yields the Doppler effect
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Boosting the distribution

Some space (points) and momentum (arrows) distribution of thermal pions
(T = 160 MeV) in a fluid element at rest, and moving to the right at a
velocity v (in units of c)

v=0 v=0.5 v=0.7

We observe the shift of velocities in the direction of the boost (and also the
Lorenz contraction of the distribution, not relevant here).
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Reminder from differential geometry

Surface integral

I =

∫∫
S

d~S · ~F =

∫∫
S

Fxdy dz + Fydz dx+ Fzdx dy =

∫∫
S

εijkFidrjdrk

~r = (x, y, z), d~S = dS ~n, ~n - normal vector to the element S, ~n2 = 1
(recall the concept of the flux through a surface)
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Surface integral, cont.

In curvilinear coordinates S can be parametrized with 2 variables (α, β). Then

I =

∫∫
dα dβ

[
Fx

∂(y, z)

∂(α, β)
+ Fy

∂(z, x)

∂(α, β)
+ Fz

∂(x, y)

∂(α, β)

]
The jacobians are

∂(x, y)

∂(α, β)
=

∣∣∣∣ ∂x/∂α ∂x/∂β
∂y/∂α ∂y/∂β

∣∣∣∣
etc.

I =

∫∫
dα dβ εijkFi

∂rj
∂α

∂rk
∂β

=

∫∫
dα dβ

∣∣∣∣∣∣
Fx Fy Fz

∂x/∂α ∂y/∂α ∂z/∂α
∂x/∂β ∂y/∂β ∂z/∂β

∣∣∣∣∣∣
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Example: area of the sphere

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, ~n = ~r/r

I =

∫∫
S

d~S · ~r/r =

∫∫
dθ dφ

∣∣∣∣∣∣
x/r y/r z/r
∂x/∂θ ∂y/∂θ ∂z/∂θ
∂x/∂φ ∂y/∂φ ∂z/∂φ

∣∣∣∣∣∣ =

· · · = r2

∫ 2π

0

dφ

∫ π

0

sin θ dθ = 4πr2

Homework
Complete the above derivation.
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Emission from a surface

Imagine particles are emitted from a surface in the direction ~k (~k2 = 1), with
some probability distribution f(~n · ~k). Then

d2N

dk2
=

∫∫
S

dSf(~n(x, y, z) · ~k)

Note that particles emitted in the direction ~k originate from different positions on
S. At a given direction, we collect from various surface elements!
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Homework
Assume particles are emitted from a half-sphere with perfect collimation to
the normal, i.e, ~n ‖ ~k, or f(~n · ~k) = δ(~n− ~k). Parametrize k in spherical
angles and find the distribution of emission in these angles.
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The Frye-Cooper formula

Emission from a fireball is conceptually analogous to the above examples, with
the following differences: it occurs from volume elements, it is not static (the
fireball expands), and relativity/Lorentz invariance must be taken into account.

If things were static, then one would collect particles (hadrons) produced from
various fluid elements at rest with isotropic emission distribution depending on
the hadrons energy, f(E):

d3N

d3p
=

∫
V

dV fi(E)

Rewrite invariantly: uµ = 1√
1−v2 (1, ~v) (four-velocity, uµuµ = 1), at rest

uµ = (1, 0, 0, 0)). Then E = p0 → p · u, also recall E/d3p = 1/d2pT dy – Lorentz
invariant →

E d3N

d3p
=

d3N

d2pT dy
=

∫
V

dV E fi[p · u(x)]

It remains to write down invariantly dV E.
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Frye-Cooper 2

Answer: we should substitute

dV E → d3Σµ(x)pµ

where

d3Σµ(x) = εµαβγ
∂xα

∂p

∂xβ

∂q

∂xγ

∂r
dp dq dr

is a 3-D volume element (from hypersurface) in the 4-D space-time. Indeed, for a
"static" fireball x0 = t =const and using p = x, q = y, r = z we find immediately
dV = dxdydz, hence indeed there is matching to the case where emission occurs
everywhere at the same time t.

In general, this is of course not the case and one has to use the general formula

Frye-Cooper
Ed3Ni
d3p

=

∫
Σ

d3Σµ(x)pµ fi[p · u(x)]
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Example

Collecting from fluid elements along the longitudinally extending (and
expanding – red arrows) fireball:
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Hypersurface

d3Σµ(x) = εµαβγ
∂xα

∂p

∂xβ

∂q

∂xγ

∂r
dp dq dr

xα - coordinates in space-time, p, q, r - parameters of a 3-dim. hypersurface
Example:

Boost-inv. freeze-out [Schnedermann, Sollfrank, Heinz, PRC48 (1993) 2462]
xµ = (t, x, y, z) =

(
τ(ζ)coshα‖, ρ(ζ) cosφ, ρ(ζ) sinφ, τ(ζ)sinhα‖

)
→

d3Σµ =
(
dρ
dζ coshα‖,

dτ
dζ cosφ, dτdζ sinφ, dρdζ sinhα‖

)
ρ(ζ)τ(ζ)dζdα‖dφ

Above τ =
√
t2 − z2 and ρ =

√
x2 + y2 are some known functions of ζ (adjusted

somehow to "physics"), and (ζ, α‖, φ) parametrize the hypersurface.

Homework
Derive d3Σµ in the above model.

With a complementary hypothesis for uµ one may obtain model results without
running lengthy hydrodynamics simulations.
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Freeze-out from perfect hydrodynamics

Hydrodynamics provides d3Σµ and uµ when a freeze-out condition is met
(typically, T = Tf ) as a numerical output

In different locations, the freeze-out occurs at different times (this is so
also in non-relativistic explosions)

More elementary discussion of freeze-out parameterizations can be found in
[W. Florkowski, WB, Acta Phys.Polon. B35 (2004) 2895]
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Freeze-out from perfect hydrodynamics

RHIC@200 GeV
r - transverse radius, t - time
labels - transverse flow velocity v/c

Sections through the hypersurface
defined by Tf = 145 MeV (3-D
object in 4-D space) at z = 0 and
y = 0 (red) or x = 0 (blue).

[WB, M. Chojnacki, W. Florkowski, A.
Kisiel, PRL 101 (2008) 022301]
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Recall the Doppler effect
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Effects on the pT spectra
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– thermal: pion spectrum from a static
fireball
– thermal+decays: initial and secondary
pions, which lead to a decrease of the
inverse slope
– Bjorken: pure longitudinal expansion →
redshift, as all fluid elements move away
from the observer → cooling of the
spectrum.
– our model: transverse flow added, hence
some fluid elements move towards the
observer → blueshift

Radial flow → blueshift and redshift → convex

[WB, W. Florkowski, PRL 87(2001)272302 ]
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Example pT spectra @130 GeV

Tf = 165 MeV, µB = 41 MeV [WB, W. Florkowski, PRL 87(2001)272302 ]
– mass hierarchy (from thermal motion and from transverse flow)
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pT spectra, RHIC vs the LHC

More flow with increasing energy → more Doppler shift!
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Mean transverse momenta

Blast Wave, T=160 MeV

p, p
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Radial flow component

Blast wave model: → enhancement of the mass hierarchy

dN

dy d2pT
= const×mT I0

(
pT sinhα

T

)
K1

(
mT coshα
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)
, vr/c = tanhα
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Initial geometry

Au+Au collision at RHIC
(view along the beam)
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1 Participants determine the geometry
of the overlap region

2 Initial entropy distribution in more
microscopic approaches (IP Glasma)
also follows the geometry of the
overlap region

3 Strong radial flow
4 Initial eccentricity → anisotropic flow

of hadrons [Ollitrault 1992]
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Initial geometry

Au+Au collision at RHIC
(view along the beam)
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Rescattering/collectivity essential

[ALICE]
In each event, define the harmonic flow coefficients and event-plane angles:

dN/dφ ∝ 1 + 2
∑
n

vn cos[n(φ−Ψn)]
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Fluctuations

Collapse of the nuclear wave
function → each Little Bang
different
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y 1 Higher Fourier components appear
2 Odd harmonics also show up,

triangular flow
3 Fluctuations dominant for central

A+A and for small systems, such as
p+A (see later on)

New thinking since [Miller and Snellings 2003]
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Collectivity: shape/size – flow transmutation

smaller → faster

Any rescattering will do!
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Collimation from the Doppler effect

Emission from a fast moving
element of fluid
Collimation of hadrons
(increasing with mass)
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Multi-particle correlations in the azimuth are used in the cumulant or other
methods to extract the flow coefficients without the non-flow
contamination (from jets, resonance decays, . . . )

[Borghini, Ollitrault 2001]
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Features of harmonic flow

1 Mass ordering of harmonic flow coefficients vn
2 Higher harmonics suppressed
3 Near-side ridge (discussed later on) - considered the “proof” of

harmonic flow
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v2 vs
√
sNN

(different physics at lower energies)

WB (IFJ) Ultrarelativistic collisions IFJ 2020 106 / 142



v2 vs pT

[ALICE, PRL 105(2010)252302]

At the LHC the differential elliptic flow is the same as at RHIC, but
“sampling” is at higher pT
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Lecture 4
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Flow (radial and harmonic) leads to correct phenomenology of the pT
spectra and vn, with proper dependence on the geometry (shape-flow
transmutation), collision energy, and mass hierarchy

Hydrodynamics

What produces the flow (collectivity)?

Flow (and jet quenching) are the two major discoveries of the
ultra-relativistic heavy-ion program!
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Basics

Fluid ≡ substance that cannot resist any shear force (gas, liquid,
plasma), continuously deforms
size of particles � fluid element � size of the system
Knudsen number: Kn = λ/L, λ mean free path, L - system’s size
Kn� 1 → fluid description

[Wikipedia]
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Assumes the shape of the container...
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Reminder: the energy-momentum tensor T µν

Noether theorem
Any continuous symmetry of dynamics → conserved current jµ

i.e., there is a continuity equation ∂µjµ = 0. Explicitly, ∂0j0(t, ~x) + ~∇·~j(t, ~x) = 0.
Integrating over a volume and using Gauss’ law yields

d/dtQ(t) = d/dt

∫
V

dV j0 = −
∫
V

dV ~∇ ·~j = −
∫
S

~n ·~j

If the volume contains the whole system, nothing leaks (the flux through S is 0),
then the charge Q is conserved.
Four translations in space-time are continuous symmetries → four Noether
currents. They can be grouped into one Lorentz-covariant object,

Energy-momentum tensor
Tµν , satisfying the continuity equations ∂νTµν = 0

In our case Tµν = T νµ (some issues here in field theory, in general relativity it is
symmetric)
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T µν in kinetic theory

In general, both particles and fields contribute to Tµν . In kinetic theory one
introduces the space-time – momentum distribution f(x, p) of particles. Then one
can show that

T µν in relativistic kinetic theory

Tµν(x) =
∫
d3p
p0
pµpνf(x, p)

The interpretation of the µ = 0 terms is obvious:

T 00 =

∫
d3p p0f(x, p)− energy, T 0i =

∫
d3p pif(x, p)−momentum

The ij terms may be viewed as “correlations” T ij =
∫
d3p
p0
pipjf(x, p). Note that

the trace

Tµµ = T 00 −
∑
i

T ii =

∫
d3p

p0
(p2

0 − ~p 2)f(x, p) = m2

∫
d3p

p0
f(x, p) ∝ m2

(in QCD the trace anomaly (quantum effect) makes the trace non-zero despite
(nearly) massless quarks and gluons! Tµµ ∝ GµνGµν)
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T µν in a fluid

In general all independent 10 components may arise. Imagine, however,
f = f(x, p · u), where u is a Lorentz vector (it becomes the four-velocity from the
next slide). Then by Lorentz covariance

Tµν(x) =

∫
d3p

p0
pµpνf(x, p · u) = Auµuν +Bgµν

(the only symmetric tensors to our disposal are uµuν and gµν)

Homework

Evaluate the current
∫
d3p
p0
pµf(x, p · u), where f ∝ e−p·u/T , with u · u = 1 for the

case of massless particles, p0 = |~p|.
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Perfect (a.k.a. ideal) hydrodynamics (no viscosity)

Local thermal equilibrium at point x: Tµν(x) =
∫ d3p

p0
pµpνfeq(x, u · p;T, µ)

Landau’s definition of the four-velocity of the fluid

Tµν(x)uµ(x) = λ(x)uν(x)

uµu
µ = 1, uµ = γ(1, vx, vy, vz) =

1√
1− v2

(1, vx, vy, vz)

The perfect hydro form follows (uµ and gµν for disposal):

Tµν = (ε+ P )uµuν − Pgµν (λ = ε)

In the fluid element’s rest frame uµ = (1, 0, 0, 0)
and

Tµν(x) =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , ε = ε(T (x), µ(x)), P = P (T (x), µ(x))

WB (IFJ) Ultrarelativistic collisions IFJ 2020 116 / 142



The perfect hydro equations

Energy-momentum conservation → Euler eqns.

∂µT
µν(x) = 0,

4 equations for 5 unknown functions: ~v, ε, P – need the equation of state,
which is specific for a given system, linking ε and P to close the system

Example: massless particles → ε = 3P

Homework
1. (trivial) Obtain the equation of state for massless particles.
2. Write down the equation of state for dust (occurs in the Universe): very
cold tiny grains of matter.
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Conservation of entropy
(here checked for the case of 0 chemical potential)

∂µT
µν = ∂µ [ε(T (x)) + P (T (x))uµ(x)uν(x)− P (T )gµν ] = 0

0 = ∂µ1 = ∂µu · u = 2uν∂µu
ν → uν∂µu

ν = 0

∂µε = ∂T ε ∂µT, ∂µP = ∂TP ∂µT

Then
0 = uν∂µT

µν = ∂T ε u
µ∂µT + (ε+ P )∂µu

µ

The first law of thermodynamics
dE = TdS − PdV → dE/dV = TdS/dV − P → ε = Ts− P → s = (ε+ P )/T

In addition, there are thermodynamic (Maxwell) relations, stemming from
differentiability of thermodynamic potentials. The relevant one here (for the case of 0
chemical potential where there is only one thermodynamic variable T ) follows from the
Gibbs free energy F = E − TS, where dF = −SdT − PdV

∂TP |V = ∂V S|T → ∂TP |V = s→ dP

dT
= s = (ε+ P )/T
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Conservation of entropy cont.

With the formulas from the previous slide it is straightforward to check
that the entropy current is suµ is indeed conserved:

Entropy current conservation

∂µ(suµ) = 0

Homework (tedious)
Carry out the calculations yielding the entropy conservation.

Similar result for non-vanishing chemical potentials for conserved charge
currents: ∂µ(nuµ) = 0

Detailed reference: W. Florkowski’s book

In essence, perfect hydro has no friction forces (viscosity), so no entropy is
generated in the evolution. Also, no net baryon number, net strangeness,...,
is produced.
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Sound velocity

Consider perturbation on a static background

ε(x) = ε0 + δε(x), P (x) = P0 + δP (x)

and a small velocity uµ = (1, δvx, δvy, δvz) (recall the 5 variables). To first order

Tµν =


ε0 + δε (ε0 + P0)δvx (ε0 + P0)δvy (ε0 + P0)δvz

(ε0 + P0)δvx P0 + δP 0 0
(ε0 + P0)δvy 0 P0 + δP 0
(ε0 + P0)δvz 0 0 P0 + δP


∂0T

00 + ∂iT
i0 → ∂tδε+ (ε0 + P0)~∇ · δ~v

∂0T
0j + ∂iT

ij → (ε0 + P0)δ∂tv
j +∇jδP

Combining, ∂2
t δε−∇2δP = 0

For zero chemical potentials there is only one thermodynamic parameter T . Then
δP = dP

dε δε = c2s(T )δε. We thus arrive at the wave equation

∂2
t δε− c2s∇2δε = 0

with cs interpreted as the sound velocity, dependent on T (or ε)
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A simple form hydro for µ = 0

In the case of vanishing chemical potentials one may rewrite the perfect hydro
equations + eq. of state in the elegant and instructive form

s uµ∂µdu
ν = c2s(s)(g

µν − uµuν)∂µs, ∂µ(suµ) = 0

The sound velocity inputs a property of the medium, with c2s(T ) = dP
dε = s

T
dT
ds

(the latter from thermodynamic equalities)
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c
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no first order phase transition
(there dP

dε would vanish!)

no shock or rarefaction waves (!)

laminar flow, no turbulence →
"easy"

[M. Chojnacki, W. Florkowski 2007]
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Digression on hadronization

As the system cools down, quarks and gluons are gradually replaced with
hadrons

0
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0.2

0.3

0 200 400 600 800 1000

T     [MeV]

lQCD  Wuppertal-Budapest

c
s
2

Hadronization is conveniently carried over “behind the back”, hidden in
the eq. of state
Fluid changed into particles via the Frye-Cooper mechanism, no need
for elusive fragmentation models
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Bjorken flow

Purely longitudinal expansion uµ = 1
τ (t, 0, 0, z), assumed boost invariance

involves dependence on the proper time τ =
√
t2 + z2 only

∂µu
µ = 1

τ , ∂µτ = uµ

0 = ∂µ(suµ) =
ds(τ)

dτ
+
s(τ)

τ
→ s(τ) = s(τ0)

τ0
τ

Thermodynamic relations for µ = 0: ε+ P = Ts, dε = T ds, dP = s dT , from
where (for ultra-relativistic particles, where P = c2sε)

ε(τ) = ε(τ0)
(τ0
τ

)1+c2s
, T (τ) = T (τ0)

(τ0
τ

)c2s
→ estimates based on entropy conservation. From known experimental hadronic
yields per unit of rapidity one infers εQGP(τ0) ' 4 GeV/fm3 (for comparison, the
saturation density of nuclear matter is only ' 0.16 GeV/fm3)

Homework
Recompute the Bjorken model
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Resume

The general concept is very clear: energy-momentum conservation, baryon
number conservation, ... What we need:

Low mean-free path compared to a characteristic size, λ� L

A fluid element must contain many particles. So, obviously, in total
one needs very many particles
Thermal equilibrium (or not too far) must occur in the fluid element
Equation of state as the property of the medium. Can be obtained
from lattice QCD/hadronic gas.
Very important: Initial conditions must be provided on a (space-like)
hyper-surface. Hydro is an initial-value problem and reflects the
properties of the medium as well as the initial condition. This is
typically provided at a constant proper time τ =

√
t2 − z2 =const.,

whereas in the transverse plane it assumes some specific shape (see
the previous lecture on the shape-flow transmutation).
The initial conditions may be "single shot" - some average, or varying
event-by-event (e-by-e).

WB (IFJ) Ultrarelativistic collisions IFJ 2020 124 / 142



Relativistic 2+1D perfect hydro (boost invariant)

central (0-20%)

[M. Chojnacki, W. Florkowski]
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Relativistic 2+1D perfect hydro (boost invariant)

non-central (40-60%)

[M. Chojnacki, W. Florkowski]
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Kinetic arguments for viscosity

[Wikipedia]

F/A = η∂yvx

Re =
ρvL

η

estimates for QGP:
Re ∼ 10 - very small!
(thousands needed for
turbulence)

Navier-Stokes equations:

ρ
(
∂tvi + ~v · ~∇vi

)
= −∇iP + η∇2vi

one of Millennium Problems!
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Various materials

material η [Pa s] η/s [~/kB]
water 3× 10−4 8
honey 1000 5× 107

superfluid 4He 10−6 2
ultra-cold 6Li < 10−15 < 0.3

QGP < 2× 1011 < 0.4
pitch 2× 1011 1016

U. of Queensland, 8 drops
since 1927, Ig Nobel prize
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Bounds on shear viscosity

dilute gas: η = 1
3npl (density × momentum × mean free path)

Quantum limit
Heisenberg uncertainty principle: pl ≥ ~ and s ∼ kBn → η/s ≥∼ ~/kB

[P. Danielewicz and M. Gyulassy, PRD 31 (1985) 53]

KSS bound based on AdS/CFT: η/s ≥ 1
4π~/kB

[P. Kovtun, D. T. Son, and A. O. Starinets, PRL 94 (2015) 111601]

• l = 1
nσel
→ η = p

3σel
– counterintuitive!
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Shear and bulk

shear viscosity η – resistance to deformation
bulk viscosity ζ – resistance to expansion (volume change)

Friction makes things smoother! [from G. Denicol]
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Adding viscosities into relativistic hydro

Recent review: [P. Romatschke, U. Romatschke, arXiv:1712.05816]
Israel-Stewart second-order hydro: perfect fluid

Tµν0 = (ε+ p)uµuν − pgµν

+ stress corrections from shear π (traceless) and bulk Π viscosities

Tµν = Tµν0 + πµν + Π∆µν

∂µT
µν = 0

The viscous corrections are solutions of 6 additional equations:

∆µα∆νβuγ∂γπαβ =
2ησµν − πµν

τπ
− 4

3
πµν∂αu

α

uγ∂γΠ =
−ζ∂γuγ −Π

τΠ
− 4

3
Π∂αu

α

∆µν = gµν − uµuν , ∇µ = ∆µν∂ν

σµν =
1

2

(
∇µuν +∇νuµ −

2

3
∆µν∂αu

α

)
The relaxation time is taken as τπ = τΠ = 3η

Ts
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Quenching of flow

perfect shear shear+bulk
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Quenching of flow with
viscosity
Increasing with the
Fourier rank
Sets limits on viscosity,
which is close to the KSS
bound η/s = 1/4π

... but many other model
parameters

Figure:
[Bazow, Heinz, Strickland 2016]
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Damping of flow

[from G. Denicol]
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3D numerics

[B. Schenke https://quark.phy.bnl.gov/∼bschenke]
[other codes]
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Initial conditions

Initial value problem for partial differential equations → need to
choose initial conditions for the functions on a time-like hypersurface,
e.g, with constant τ =

√
t2 − z2

These conditions fluctuate event-by-event ...
... and (in hydro) are carried over to the freeze-out deterministically
The starting time τ must be very short (a fraction of fm) for sufficient
flow to develop (phenomenological statement)

However, on the general grounds of the fluctuation-dissipation theorem,
hydro must also bring in some fluctuations

[J. I. Kapusta, B. Mueller, M. Stephanov, Phys.Rev. C85 (2012) 054906 – Bjorken flow
L. Yan, H. Grönqvist, JHEP 1603 (2016) 121 – Gubser flow:
“. . . the effect of hydrodynamical noise on flow harmonics is found to be negligible,
especially in the ultra-central Pb-Pb collisions . . . ”]
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Glasma initial conditions

[Schenke, Tribedy, Venugopalan, PRL 108(2012)252301, arXiv:1202.6646]
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The Glauber/wounded nucleon model

[Białas, Błeszyński, Czyż, NPB 111 (1976) 461]
wounded + binary: N ∼ (1− α)Nw/2 + αNbin, α ∼ 0.14

[D. Kharzeev, M. Nardi, PLB 507 (2001) 121]
soft – wounded (a nucleon gets wounded only once)
hard – binary
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Proportionality of harmonic flow to the initial eccentricity
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[Niemi, Denicol, Holopainen, Huovinen 2012]
“Hydro without hydro” – linearity of the shape-flow transmutation

vn = κnεn, (n = 2, 3)

κn depend on the collision energy, multiplicity, viscosity . . .

Approximate linearity allows us to build scale-less combinations independent
of the response coefficient κn (see later)
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Isotropization in Color Glass Condensate (with SUc(2))
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[Epelbaum, Gelis, arXiv:1307.2214]
[Review: Berges, Blaizot, Gelis, J. Phys. G 39(2012)085115]
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Longitudinal-transverse anisotropy

[Florkowski, Ryblewski, 2008]

Thermal equilibrium only in the transverse direction
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Anisotropic hydro

One can obtain satisfactory phenomenology in approaches without
isotropization, where PT ≥ PL

[Alqahtani, Nopoush, Ryblewski, Strickland, PRL 119 (2017) 042301]
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That things are nontrivial even classically...

The Crooks radiometer (1873)

Which way will it turn?

Not the light pressure!
Not Navier-Stokes
The Kortweg equations
(capillarity) do it
(arxiv:1702.00831)

https://www.quantamagazine.org/famous-fluid-equations-are-incomplete-20150721/
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Summary of hydrodynamics

Thermal equilibrium at freeze-out → species ratios
Radial flow → 〈pT 〉, mass hierarchy, shape of pT spectra
Initial anisotropy + shape-flow transmutation from copious
rescattering (hydrodynamics) → harmonic flow (any rescattering
would do!)
Viscosity → smoothing effect
Viscous hydrodynamics difficult!
Early thermalization → early hydrodynamization (no need for strict
thermal equilibrium or isotropy)
Successful phenomenology achieved, but numerous parameters
(starting time, initial temperature, viscosities, freeze-out condition,
regularization of hydrodynamics, model of the initial condition, . . . ).
So we have a global picture rather than a very detailed picture.
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