Klastry $\alpha \mathbf{w}$ relatywistycznych zderzeniach jądrowych

Wojciech Broniowski

UJK Kielce \& IFJ PAN Cracow

Seminarium NZ41
31 January 2014

[based on WB\& E. Ruiz Arriola, arXiv:1312.0289]

Instead of outline

Two phenomena are related:
α clustering in light nuclei
\downarrow
harmonic flow in ultra-relativistic $A+B$ collisions
low-energy structure \longleftrightarrow highest energy mini bangs (!)

History

David Brink: After Gamow's theory of α-decay it was natural to investigate a model in which nuclei are composed of α-particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4 n -nuclei like ${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O} \ldots$ were composed of α-particles

CLUSTERS:

Fig. 1. Alpha-particle configuration for some $4 N$ nuclei.

Present status

[M. Freer, WPCF2013, H. Fynbo+Freer, Physics 4 (2011) 94] ab initio calculations up to ${ }^{16} O \longleftrightarrow$ strong α clusterization

Fragmentation

Evidence from dissociation in nuclear track emulsions (Zarubin 2013)

Table 3.3 Distribution of ${ }^{7} \mathrm{Be}$ interactions over identified fragmentation channels $\sum Z_{f r}=4$

Channel $E_{t h}, \mathrm{MeV}$	$\begin{aligned} & { }^{4} \mathrm{He}+{ }^{3} \mathrm{He} \\ & (1.6) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \\ & (22.2) \end{aligned}$	$\begin{aligned} & { }^{4} \mathrm{He}+2 p \\ & (6.9) \end{aligned}$	$\begin{aligned} & { }^{4} \mathrm{He}+d+p \\ & (12.9) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{He}+2 p \\ & (29.9) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{He}+d+p \\ & (29.5) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{He}+2 d \\ & (25.3) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{He}+t+p \\ & (21.2) \end{aligned}$	$\begin{aligned} & 3 p+d \\ & (35.4) \end{aligned}$	$\begin{aligned} & { }^{6} \mathrm{Li}+p \\ & (5.6) \end{aligned}$
$N_{\text {ws }}$	30	11	13	10	9	8	1	1	2	9
(\%)	(31)	(12)	(14)	(11)	(10)	(9)	(1)	(1)	(2)	(10)
$N_{t f}$	11	7	9	5	9	10			1	3
(\%)	(20)	(12)	(16)	(9)	(16)	(19)			(2)	(6)

From α clusters to flow in relativistic collisions

$$
\begin{aligned}
& \alpha \text { clusters } \rightarrow \text { asymmetry of shape } \rightarrow \text { asymmetry of initial fireball } \rightarrow \\
& \rightarrow \text { hydro or transport } \rightarrow \text { collective harmonic flow }
\end{aligned}
$$

What are the chances of detection?

Related idea: triton $/{ }^{3} \mathrm{He}-\mathrm{Au}$ at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ - single event

Imprints of the α clusters clearly visible

Intrinsic distributions: 3α 's in a triangular arrangement

clustered

unclustered

Constraints from EM form factor

Electric charge density (thin lines) and the corresponding distribution of the centers of nucleons (thick lines) in ${ }^{12} \mathrm{C}$ for the data and BEC calculations (dashed lines), and for the FMD calculations (solid lines), plotted against the radius.

Central depletion

Distribution of pairs

Radial density in the relative NN distance r_{12}

Our Monte Carlo

The α cluster structure is modeled sufficiently accurately

[Buendia et al. 2004]

${ }^{12} \mathrm{C}-{ }^{208} \mathrm{~Pb}$ collision

Mixed Glauber model at SPS conditions: $n \sim \frac{1-a}{2} N_{\mathrm{w}}+a N_{\mathrm{bin}}, \quad a=0.12$
Intrinsic distributions in the transverse plane in the fireball, $N_{w}>70-$ large multiplicity

unclustered

Eccentricity parameters

Eccentricity parameters

$$
\epsilon_{n} e^{i n \Phi_{n}}=\frac{\sum_{j} \rho_{j}^{n} e^{i n \phi_{j}}}{\sum_{j} \rho_{j}^{n}}
$$

describe the shape (j labels the sources in the event, $n=$ rank)

Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Digression: deuteron-A

Initial entropy density in a d-Pb collision with $N_{\text {part }}=24$ [Bożek 2012]

Fluctuations around the intrinsic ellipticity (model predictions confirmed by PHENIX in 2013)

Geometry vs multiplicity in ${ }^{12} \mathrm{C}-\mathrm{Pb}$

The triangle plane parallel or perpendicular to the transverse plane:

higher multiplicity
higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

Clusters:

When $N_{w} \nearrow$ then $\left\langle\epsilon_{3}\right\rangle \nearrow$ and $\left\langle\epsilon_{2}\right\rangle \searrow$
and $\left\langle\sigma\left(\epsilon_{3}\right) / \epsilon_{3}\right\rangle \searrow,\left\langle\sigma\left(\epsilon_{2}\right) / \epsilon_{2}\right\rangle \nearrow$ tending to $\sqrt{4 / \pi-1} \sim 0.52$
No clusters:
similar behavior for $n=2$ and $n=3$

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. It has been found that

$$
\left\langle v_{n}\right\rangle \simeq A\left\langle\epsilon_{n}\right\rangle
$$

E-by-e fluctuations

$$
\frac{\sigma\left(v_{n}\right)}{\left\langle v_{n}\right\rangle} \simeq \frac{\sigma\left(\epsilon_{n}\right)}{\left\langle\epsilon_{n}\right\rangle}
$$

Measured flow coefficients reflect the initial shape eccentricities

Triangularity vs ellipticity

clustered
unclustered

Clusters:

Anticorrelation: $\rho\left(\epsilon_{2}, \epsilon_{3}\right) \simeq-0.3$

Dependence on the collision energy

Qualitative conclusions remain from SPS to the LHC

Conclusions

Signatures of clustered ${ }^{12} \mathrm{C}^{208} \mathrm{~Pb}$ collisions \rightarrow

- Increase of ϵ_{3} and v_{3} with multiplicity for the highest multiplicity events
- Decrease of scaled variance ϵ_{3} and v_{3} with multiplicity for the highest multiplicity events
- Anticorrelation of ϵ_{2} and ϵ_{3}, or v_{2} and v_{3}

Extensions:

- Other systems
- More detailed modeling

Possible future data (NA61?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α-cluster structure of the colliding nuclei.
Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models

