Klastry α w relatywistycznych zderzeniach jądrowych

Wojciech Broniowski

UJK Kielce & IFJ PAN Cracow

Seminarium NZ41 31 January 2014

[based on WB& E. Ruiz Arriola, arXiv:1312.0289]

Two phenomena are related: α clustering in light nuclei \uparrow harmonic flow in ultra-relativistic A+B collisions

low-energy structure \leftrightarrow highest energy mini bangs (!)

History

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O ... were composed of α -particles

Generated by CamScanner from intsig.com

[M. Freer, WPCF2013, H. Fynbo+Freer, Physics 4 (2011) 94]

ab initio calculations up to ${}^{16}O \longleftrightarrow$ strong α clusterization

< ≣ > <

Image: Image:

Evidence from dissociation in nuclear track emulsions (Zarubin 2013)

Channel E _{th} , MeV	⁴ He + ³ He (1.6)	${}^{3}\text{He} + {}^{3}\text{He}$ (22.2)	4 He + 2 <i>p</i> (6.9)	$^{4}\text{He} + d + p$ (12.9)	3 He + 2 <i>p</i> (29.9)	$^{3}\text{He} + d + p$ (29.5)	3 He + 2d (25.3)	${}^{3}\text{He} + t + p$ (21.2)	3 <i>p</i> + <i>d</i> (35.4)	⁶ Li + <i>p</i> (5.6)
N _{ws}	30	11	13	10	9	8	1	1	2	9
(%)	(31)	(12)	(14)	(11)	(10)	(9)	(1)	(1)	(2)	(10)
Ntf	11	7	9	5	9	10			1	3
(%)	(20)	(12)	(16)	(9)	(16)	(19)			(2)	(6)

Table 3.3	Distribution of	Be interactions over identified fragmentation channels	$\sum Z_{fr} = 4$
-----------	-----------------	--	-------------------

(日) (同) (三) (三)

From α clusters to flow in relativistic collisions

 $\begin{array}{l} \alpha \text{ clusters} \rightarrow \text{asymmetry of shape} \rightarrow \text{asymmetry of initial fireball} \rightarrow \\ \rightarrow \text{ hydro or transport} \rightarrow \text{collective harmonic flow} \end{array}$

What are the chances of detection?

Related idea: triton/ 3 He–Au at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

Imprints of the α clusters clearly visible

Intrinsic distributions: 3 α 's in a triangular arrangement

Constraints from EM form factor

Electric charge density (thin lines) and the corresponding distribution of the centers of nucleons (thick lines) in $^{12}\mathrm{C}$ for the data and BEC calculations (dashed lines), and for the FMD calculations (solid lines), plotted against the radius.

Central depletion

Distribution of pairs

WB (UJK & IFJ PAN)

NZ41 2014 10 / 20

¹²C–²⁰⁸Pb collision

Mixed Glauber model at SPS conditions: $n \sim \frac{1-a}{2}N_w + aN_{bin}$, a = 0.12

Intrinsic distributions in the transverse plane in the fireball, $N_w > 70 - {\rm large\ multiplicity}$

Eccentricity parameters

$${}_{n}e^{in\Phi_{n}} = \frac{\sum_{j}\rho_{j}^{n}e^{in\phi_{j}}}{\sum_{j}\rho_{j}^{n}}$$

describe the shape (j labels the sources in the event, n=rank)

F

Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Initial entropy density in a d-Pb collision with $N_{\text{part}} = 24$ [Bożek 2012]

Fluctuations around the intrinsic ellipticity (model predictions confirmed by PHENIX in 2013)

The triangle plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity

Ellipticity and triangularity vs multiplicity

and $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle$, $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle$ / tending to $\sqrt{4/\pi - 1} \sim 0.52$

No clusters:

similar behavior for n = 2 and n = 3

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. It has been found that

$$\langle v_n \rangle \simeq A \langle \epsilon_n \rangle$$

WB (UJK & IFJ PAN)

NZ41 2014 16 / 20

E-by-e fluctuations

$$\frac{\sigma(v_n)}{\langle v_n \rangle} \simeq \frac{\sigma(\epsilon_n)}{\langle \epsilon_n \rangle}$$

Triangularity vs ellipticity

NZ41 2014 18 / 20

Dependence on the collision energy

Qualitative conclusions remain from SPS to the LHC

Conclusions

Signatures of clustered $^{12}\text{C-}^{208}\text{Pb}$ collisions \rightarrow

- Increase of ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Decrease of scaled variance ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Anticorrelation of ϵ_2 and ϵ_3 , or v_2 and v_3

Extensions:

- Other systems
- More detailed modeling

Possible future data (NA61?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α -cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models