Alpha clustering from relativistic collisions

Wojciech Broniowski

UJK Kielce & IFJ PAN Cracow

NA61 Meeting 12 February 2014, Warsaw

[details in WB& E. Ruiz Arriola, arXiv:1312.0289]

(WPCF 2013 $\rightarrow \alpha$)

low-energy structure \leftrightarrow highest energy mini bangs (!)

< ∃ > <

History

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O ... were composed of α -particles

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that comprise equal numbers of protons and neutrons, (e.g., ${}^{12}C$ and ${}^{16}O$) were identified that could not be described by the shell model, and it was suggested by Ikeda and others that these states could be associated with configurations composed of α particles

 α decay of $^{212}\mathrm{Po}$

Present status

ground

Hoyle 2^+

other excited

< ≥ > <

Image: A math black

[Martin Freer at WPCF2013, H. Fynbo+Freer: Physics 4 (2011) 94]

ab initio calculations up to ${}^{16}O\longleftrightarrow$ strong α clusterization

Ikeda diagram

WB (UJK & IFJ PAN)

NA61 2014 6 / 24

Funaki et al.: certain states in self-conjugated nuclei ... can be described as product states of α particles, all in the lowest 0S state. We define a state of condensed α particles in nuclei as a bosonic product state in good approximation, in which all bosons occupy the lowest quantum state of the corresponding bosonic mean-field potential

Another approach: Fermionic Molecular Dynamics

From α clusters to flow in relativistic collisions

 $\begin{array}{l} \alpha \text{ clusters} \to \text{asymmetry of shape} \to \text{asymmetry of initial fireball} \to \\ & \to \text{ hydro or transport} \to \text{collective harmonic flow} \end{array}$

What are the chances of detection?

Related idea: triton/ 3 He–Au at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

Imprints of the α clusters clearly visible

Ground-state nuclei are (mostly) in 0^+ states (rotationally symmetric) The meaning of deformation concerns multiparticle correlations between nucleons.

$$|\Psi_{0^+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi}\int d\Omega\Psi_{\rm intr}(x_1,\ldots,x_N;\Omega)$$

(holds from deuterium to U)

The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_n^{\text{intr}}(\vec{x}) = \langle f(R(-\Phi_n)\vec{x}) \rangle$. Brackets indicate averaging over events and $R(-\Phi_n)$ is the inverse rotation by the principal-axis angle in each event

Intrinsic distributions: 3 $\alpha{\rm 's}$ in a triangular arrangement

Constraints from EM form factor

Electric charge density (thin lines) and the corresponding distribution of the centers of nucleons (thick lines) in $^{12}\mathrm{C}$ for the data and BEC calculations (dashed lines), and for the FMD calculations (solid lines), plotted against the radius.

Central depletion

Distribution of pairs

WB (UJK & IFJ PAN)

NA61 2014 13 / 24

¹²C–²⁰⁸Pb collision

Mixed Glauber model at SPS conditions: $n \sim \frac{1-a}{2}N_w + aN_{bin}$, a = 0.12

Intrinsic distributions in the cluster plane in the fireball, $N_w > 70 - {\rm large}$ multiplicity

Eccentricity parameters

$${}_{n}e^{in\Phi_{n}} = \frac{\sum_{j}\rho_{j}^{n}e^{in\phi_{j}}}{\sum_{j}\rho_{j}^{n}}$$

describe the shape (j labels the sources in the event, n=rank)

F

Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Initial entropy density in a d-Pb collision with $N_{\text{part}} = 24$ [Bozek 2012]

Fluctuations around the intrinsic ellipticity

WB	(UJK	& IFJ	PAN)
----	------	-------	------

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

and $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle$, $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle$ \nearrow tending to $\sqrt{4/\pi - 1} \sim 0.52$

No clusters:

similar behavior for n = 2 and n = 3

WB (UJK & IFJ PAN)

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. It has been found that

$$\langle v_n \rangle \simeq A \langle \epsilon_n \rangle$$

WB (UJK & IFJ PAN)

NA61 2014 19 / 24

E-by-e fluctuations

$$\frac{\sigma(v_n)}{\langle v_n \rangle} \simeq \frac{\sigma(\epsilon_n)}{\langle \epsilon_n \rangle}$$

Triangularity vs ellipticity

NA61 2014 21 / 24

Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

small nucleus \rightarrow large deformation from clusters big nucleus \rightarrow large fireball, collectivity

small on small \rightarrow more difficult evolution, other signatures (requires careful studying)

big on big (U+U, Cu+Au) \rightarrow signatures of nuclear deformation (but not clustering) [Filip, Volshin 2010, Rybczyński, WB, Stefanek 2011]

ultrarelativistic (RHIC, LHC) at central rapidities \rightarrow tested evolution codes exist

Conclusions

Signatures of clustered $^{12}\text{C-}^{208}\text{Pb}$ collisions \rightarrow

- Increase of ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Decrease of scaled variance ϵ_3 and v_3 with multiplicity for the highest multiplicity events
- Anticorrelation of ϵ_2 and ϵ_3 , or v_2 and v_3

Extensions:

- Other systems
- More detailed modeling

Possible future data (NA61?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α -cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models