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What is a Chiral Quark Model?

Prototype: Nambu-Jona–Lasinio, UV cut-off, interactions →
χSB: massive quarks, Goldstone pions, one-loop (leading-Nc)

more than 20 years of vast applications: low-energy hadron spectroscopy and

phenomenology (mesons, baryons, pentaquarks, Gasser-Leutwyler

coefficients), high-density matter (2SC,CFL), high temperature matter, soft

matrix elements for high-energy processes, ...

q

k + q

k

k

The momentum running around the loop is cut

k < Λ
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Requirements for a quark model

1. Give finite values for hadronic observables

2. Satisfy the electromagnetic and chiral Ward-Takahashi

identities, thus reproducing all necessary symmetry

requirements

3. Satisfy the anomaly conditions All

simultaneously

– far

from

trivial!

4. Comply to the QCD factorization property, in the sense that

the expansion of a correlator at a large Q is a pure

twist-expansion, involving only the inverse powers of Q2,

without the logQ2 corrections. In other words, scaling

violations are due to QCD only, not low-energy physics

5. Have usual dispersion relations
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Spectral representation

We introduce the spectral regularization of the chiral quark

model, based the (generalized) Lehmann representation for the

quark propagator,

S(p) =

∫

C

dω
ρ(ω)

/p− ω

where ρ(ω) is the spectral function and C denotes a contour in

the complex ω plane chosen in a suitable way. Specific

realization will be given later on.

Examples: free theory has ρ(ω) = δ(ω −m), perturbative QCD

yields at LO Non-

perturbative?

ρ(ω) = δ(ω −m) + sign(ω)
αSCF

4π

1 − ξ

ω
θ(ω2 −m2)
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Quark condensate

〈q̄q〉 ≡ −iNc

∫

d4p

(2π)4
TrS(p) = −4iNc

∫

dωρ(ω)

∫

d4p

(2π)4
ω

p2 − ω2

The integral over p is quadratically divergent, which requires the

use of an auxiliary regularization, removed at the end

〈q̄q〉 = −Nc

4π2

∫

dωωρ(ω)

[

2Λ2 + ω2 log

(

ω2

4Λ2

)

+ ω2 + O(1/Λ)

]

The finiteness of the result at Λ → ∞ requires the conditions

∫

dωωρ(ω) = 0,

∫

dωω3ρ(ω) = 0
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and thus

〈q̄q〉 = −Nc

4π2

∫

dωlog(ω2)ω3ρ(ω).

The spectral condition allowed for rewriting log(ω2/Λ2) as

log(ω2), hence no scale dependence (no “dimensional

transmutation”) is present in the final expression.

With the accepted value of

〈q̄q〉 =≃ −(243 MeV)3

we infer the value of the third log-moment. The negative sign of

the quark condensate shows that

∫

dω log(ω2)ω3ρ(ω) > 0.
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Vacuum energy density

〈θµν〉 = −iNcNf

∫

dωρ(ω)

∫

d4p

(2π)4
×

Tr
1

/p− ω

[

1

2
(γµpν + γνpµ) − gµν(/p− ω)

]

= Bgµν + 〈θµν〉0,

where 〈θµν〉0 is the energy-momentum tensor for the free theory,

evaluated with ρ(ω) = δ(ω), and B (bag constant) is the

vacuum energy density:

B = −iNcNf

∫

C

dωρ(ω)

∫

d4p

(2π)4
ω2

p2 − ω2
,

The conditions that have to be fulfilled for B to be finite are

ρ2 = 0, ρ4 = 0
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Then

B = −NcNf

16π2
ρ′4 ≡ −NcNf

16π2

∫

C

dωlog(ω2)ω4ρ(ω)

According to the most recent QCD sum rules analysis

B = − 9

32
〈α
π
G2〉 = −(224+35

−70MeV)4

The negative sign of B enforces

ρ′4 > 0

[one can go on for other observables] −→
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Spectral moments

Normalization (at p→ ∞ we have S(p) → 1//p):

ρ0 ≡
∫

C

dωρ(w) = 1,

Finiteness of observables:

ρn ≡
∫

C

dωωnρ(ω) = 0, for n = 1, 2, 3, ...

Observables are given by inverse moments Such

a

ρ(ω)

and

C

exist!

ρ−k ≡
∫

C

dωω−kρ(ω), for k = 1, 2, 3, ...

as well as by the “log moments”,

ρ′n ≡
∫

C

dω log(ω2)ωnρ(ω), for n = 2, 3, 4, ...
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Effective action

The effective action of the model is (in the chiral limit)

Seff = −iNc

∫

C

dωρ(ω)Tr log(i /D − ωUγ5)

with D denoting the covariant derivative and the chiral fields

entering Uγ5 = exp(−iγ5τ · θ)

Sightseeing tour −→
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Elecromagnetic vacuum polarization

iΠµa,νb
V V (q) = δab

(

gµν − qµqν

q2

)

Π̄V V (q) =

= −Nc

∫

dωρ(ω)

∫

d4p

(2π)4
Tr

[

i

/p− q/− ω
γµ
λa

2

i

/p− ω
γν
λb

2

]

transverse!
Π̄V V (q) =

Nc

3

∫

C

dωρ(ω)

{

−2ω2[I(q2, ω) − I(0, ω)] + q2[
1

3
− I(q2, ω)]

}

I(q2, ω) = − 1

(4π)2

∫ 1

0

dx log
[

ω2 + x(1 − x)q2
]

The usual twice-subtracted dispersion relation holds:

Π̄V (q2) =
q4

π

∫

∞

0

dt

t2
ImΠ̄V (t)

t− q2 − i0+

This is in contrast to (non-local) quark models formulated in or the popular

proper-time regularization
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e+e− → hadrons

At large s we find proportional

to

ImΠ̄Vσ(e+e− → hadrons) →
4πα2

QED

3s

(

∑

i

e2i

)

∫

dωρ(ω),

where ei is the electric charge of the quark of species i. This is

the proper asymptotic QCD result, provided

∫

dωρ(ω) = 1
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Pion weak decay

The pion weak-decay constant, defined as

〈0 |Jµa
A (x)|πb(q)〉 = ifπqµδa,be

iq·x,

can be computed from the axial-axial correlation function. The

result is

f2
π = 4Nc

∫

dωρ(ω)ω2I(0, ω)

A finite value for fπ requires the condition ρ2 = 0. Then

f2
π = −Nc

4π2

∫

dω log(ω2)ω2ρ(ω) ≡ −Nc

4π2
ρ′2

The value fπ = 93MeV determines ρ′2. The sign is

ρ′2 < 0
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Pion electromagnetic form factor

The electromagnetic form factor for a positively charged pion,

π+ = ud̄, is defined as

〈π+(p′)|Jem
µ (0)|π+(p)〉 = (pµ + p′

µ
)eF em

π (q2)

For on-shell massless pions the electromagnetic form factor reads

F em
π (q2) =

4Nc

f2
π

∫

dwρ(ω)ω2I(q2, ω)

The low-momentum expansion is F em
π (0) = 1

F em
π (q2) = 1 +

1

4π2f2
π

(

q2ρ0

6
+
q4ρ−2

60
+
q6ρ−4

240
+ . . .

)
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The mean squared radius reads

〈r2π〉 = 6
dF

dq2
|q2=0 =

Nc

4π2f2
π

∫

dωρ(ω) =
Nc

4π2f2
π

,

which coincides with the unregularized-quark-loop result. The

numerical value is

〈r2〉emπ
∣

∣

th
= 0.34fm2, 〈r2〉emπ

∣

∣

exp
= 0.44fm2,

which is a reasonable agreement (χPT corrections).

The knowledge of the pion electromagnetic form factor allows to

determine the even negative moments of ρ(ω).
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Twist expansion and spectral conditions

In the limit of large momentum

F em
π (q2) ∼ Nc

4π2f2
π

∫

dωρ(ω)ω2{2 − 1

ǫ
− log(q2) +

2ω2

q2
[

log(−q2/ω2) + 1
]

+
2ω4

q4

[

log(−q2/ω2) − 1

2

]

. . .}

With help of the spectral conditions for n = 2, 4, 6, ... we get All

spectral

conditions

needed!
F em

π (q2) ∼ − Nc

4π2f2
π

[

2ρ′4
q2

+
2ρ′6
q4

+
4ρ′8
q6

+ ...

]

The imposition of the spectral conditions removed all the logs

from the expansion, leaving a pure expansion in inverse powers

of q2!
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Anomalous decay π0 → γγ

Γµν
π0γγ

(q1, q2) = ǫµναβq
α
1 q

β
2Fπγγ(q1, q2) = −Nc

∫

dωρ(w)

∫

d4k

(2π)4
×

Tr

[

− ω

fπ
γ5τ3

i

/k − q/2 − ω
iQ̂γµ i

/k − ω
iQ̂γν i

/k − q/1 − ω

]

+ crossed

where Q̂ = 1
2Nc + τ3

2 . We find (as if no regulator were present) Blin, Hiller

&

SchadenFπγγ(0, 0) =
8

fπ

∫

dωρ(ω)ω2

∫

d4k

(2π)4
i

(k2 − ω2)3

=
1

4π2fπ

∫

dωρ(ω) =
1

4π2fπ

which coincides with the standard QCD result!
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Pion-photon transition form factor

For two off-shell photons with momenta q1 and q2 one defines the
asymmetry, A, and the total virtuality, Q2:

A =
q21 − q22
q21 + q22

, −1 ≤ A ≤ 1, Q2 = −(q21 + q22)

At the soft pion point we find the expansion

Fπγγ(Q2, A) = − 1

2π2fπ

∫ 1

0

dx

[

2ρ′2
Q2(1 −A2(2x− 1)2)

+ . . .

]

We can confront this with the standard twist decomposition of the pion
transition form factor , Brodsky-

Lepage,

Prasza lowicz-

Rostworowski,

Dorokhov

Fγγπ(Q2, A) = J (2)(A)
1

Q2
+ J (4)(A)

1

Q4
+ . . . ,

which yields
J (2)(A) =

4fπ

Nc

∫ 1

0

dx
ϕ(x;Q0)

1 − (2x− 1)2A2

with the leading-twist pion distribution amplitude ϕ(x;Q0) = 1
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Pion light-cone wave function

The approach yields the following light-cone pion wave function:

Ψ(x, k⊥) =
Nc

4π3f2
π

∫

C

dωρ(ω)
ω2

k2
⊥

+ ω2
θ(x)θ(1 − x)

(at the low-energy scale of the model, Q0). It has correct

support and normalization, since
∫

d2k⊥Ψ(x, k⊥) = ϕ(x) = 1.

At k⊥ = 0 it satisfies the condition:

Ψ(x, 0) =
Nc

πfπ
Fπγγ(0, 0) =

Nc

4π3f2
π

In QCD one has a similar relation holding for quantities integrated over x

QCD evolution −→

[details in ERA+WB, Phys. Rev. D66(2002)094016]
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The γ → π+π0π− decay

This is an example of a low-energy process involving a quark box

diagram, which similarly to the neutral pion decay is related to

the QCD anomaly in the soft pion limit. The amplitude for

γ(q, e) → π+(p1)π
0(p2)π

−(p3) is

Tγ(q,ε)→π+(p1)π0(p2)π−(p3)
≡ F (p1, p2, p3)εαβστe

αpβ
1p

σ
2p

τ
3.

In the limit of all momenta going to zero we get (immediately!),

with the spectral normalization condition,

F (0, 0, 0) =
1

4π2f3
π

∫

dωρ(ω) =
1

4π2f3
π

which is the correct result!
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Pion structure function

We take π+ for definiteness and get Davidson

&

Arriola

in

NJL

uπ(x) = d̄π(1 − x) = θ(x)θ(1 − x),

The k⊥-unintegrated parton distribution is equal to

q(x, k⊥) =
Nc

4π3f2
π

∫

dωρ(ω)
ω2

k2
⊥

+ ω2
θ(x)θ(1 − x),

hence (at Q0) one has an interesting relation

q(x, k⊥) = q̄(1 − x, k⊥) = Ψ(x, k⊥), q(x) = ϕ(x).

The first moment of the PDF is responsible for the momentum sum rule. We
find quarks

carry

all

momentum

∫ 1

0

dxxq(x) =

∫ 1

0

dxxq̄(x) =
1

2
.
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Résumé

Spectral condition Physical significance
normalization
ρ0 = 1 proper normalization of the quark propagator

preservation of anomalies
proper normalization of the pion distribution amplitude
proper normalization of the pion structure function
reproduction of the large-Nc quark-model values

of the Gasser-Leutwyler coefficients
relation M2

V = 24π2f2
π/Nc in the VMD model

positive moments
ρ1 = 0 finiteness of the quark condensate, 〈q̄q〉

vanishing quark mass at asymptotic Euclidean momenta,
ρ2 = 0 finiteness of the vacuum energy density, B

finiteness of the pion decay constant, fπ

ρ3 = 0 finiteness of the quark condensate, 〈q̄q〉
ρ4 = 0 finiteness of the vacuum energy density, B
ρn = 0, n = 2, 4 . . . absence of logs in the twist expansion of vector amplitudes
ρn = 0, n = 5, 7 . . . finiteness of nonlocal quark condensates, 〈q̄(∂2)(n−3)/2q〉

absence of logs the twist expansion of the scalar pion form factor
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Spectral condition Physical significance
negative moments
ρ−2 > 0 positive quark wave-function normalization at vanishing momentum
ρ−1/ρ−2 > 0 positive value of the quark mass at vanishing momentum, M(0) > 0
ρ−n low-momentum expansion of correlators
log-moments
ρ′2 < 0 f2

π = −Nc/(4π
2)ρ′2

ρ′3 > 0 negative value of the quark condensate, 〈q̄q〉 = −Nc/(4π
2)ρ′3

ρ′4 > 0 negative value of the vacuum energy density, B = −Nc/(4π
2)ρ′4

ρ′5 < 0 positive value of the squared vacuum virtuality of the quark,
λ2

q = −ρ′5/ρ′3
ρ′n high-momentum (twist) expansion of correlators

WB, Spectral Quark Model 24



Vector-meson dominance in SQM

Now we construct explicitly an example of ρ(ω) doing the job.

Vector-meson dominance (VMD) of the pion form factor is

assumed:

F exp
V (t) =

M2
V

M2
V + t

.

with MV = mρ. In our approach

F SQM
V (t) =

Nc

4π2f2
π

∞
∑

n=1

ρ2−2n
2−2n−1

√
πΓ(n+ 1)

nΓ(n+ 3/2)
(−t)n

.

Comparison yields

ρ2−2k =
22k+3π3/2f2

π

NcM2k
V

k Γ(k + 3/2)

Γ(k + 1)
, k = 1, 2, 3, . . .
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In particular, the normalization condition, ρ0 = 1, yields

M2
V =

24π2f2
π

Nc

This relation is usually obtained when matching chiral quark

models to VMD, yielding MV = 826 MeV with fπ = 93 MeV,

and MV = 764 MeV with fπ = 86 MeV (in the chiral limit).

The positive even moments are obtained by analytic

continuation in the index n. They fulfill the spectral conditions

of vanishing of the positive moments since Γ(n) has single poles

at non-positive integers, n = 0,−1,−2, . . . Miracle!

ρ2n = 0, n = 1, 2, 3 . . .
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For the even log-moments we have

ρ′2n =

(

−M
2
V

4

)n
Γ(n) Γ

(

5
2 − n

)

Γ(5
2)

, n = 1, 2, 3 . . .

The first few values are

ρ′2 = −4f2π2

Nc
, ρ′4 =

2f2M2
V π

2

Nc

We may write the following interesting relation coming out from

VMD and the spectral approach:

B = −9π2f4
π

Nc
= −NcM

4
V

64π2
= −(202 − 217 MeV)4

which agrees within errors with the QCD SR estimate.
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The inverse problem

The mathematical problem is now to invert the formula

ρ2n =

∫

C

dωω2nρV (ω)

The solution is given by the following surprisingly simple function

ρV (ω) =
1

2πi

1

ω

1

(1 − 4ω2/M2
V )5/2

.

The function ρV (ω) has a single pole at the origin and branch cuts starting at
± half the meson mass, ω = ±MV /2.

w-Complex Plane 

-M / 2 M / 2 

x

contour C
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Scalar spectral function

ρ = ρV + ρS

For the case of the scalar spectral function (controling the odd moments) we
proceed heuristically, by proposing

ρS(ω) =
1

2πi

12ρ′3
M4

S(1 − 4ω2/M2
S)5/2

where the normalization is chosen in such a way that ρ′3 = −4π2〈q̄q〉/Nc.

The analytic structure of ρS(ω) is similar to the case of ρV (ω), except for the

absence of the pole at ω = 0.
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The quark propagator

S(p) = A(p)/p+B(p) = Z(p)
/p+M(p)

p2 −M2(p)

A(p2) ≡
∫

C

dω
ρV (ω)

p2 − ω2
=

1

p2

[

1 − 1

(1 − 4p2/M2
V )5/2

]

= − 10

M2
V

− 70p2

M4
V

+ . . .

B(p2) ≡
∫

C

dω
ωρS(ω)

p2 − ω2
=

48π2〈q̄q〉
M4

SNc(1 − 4p2/M2
S)5/2

No poles in the whole complex plane! Only branch cuts starting at
p2 = 4M2

V/S (obvious, since poles would lead to cuts in the pion form factor)

The absence of poles is sometimes called “analytic confinement”
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M(Q2) decreases as 1/Q3 at large Euclidean momenta, which is favored by
the recent lattice calculations. The χ2 fit results in the following optimum
values,

M0 = 303 ± 24 MeV,

MS = 970 ± 21 MeV,

with the optimum value of χ2 per degree of freedom equal to 0.72. The
corresponding value of the quark condensate is

〈q̄q〉 = −(243.0+0.1
−0.8 MeV)3.
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Other predictions

Pion light-cone wave function:

Ψ(x, k⊥) =
3M3

V

16π(k2
⊥

+M2
V /4)

5/2
θ(x)θ(1 − x)

The average transverse momentum squared is equal to

〈k2
⊥
〉 ≡

∫

d2k⊥ k
2
⊥
Ψ(x, k⊥) =

M2
V

2

which numerically gives 〈k2
⊥
〉 = (544 MeV)2 (at Q0).

Unintegrated PDF:

q(x, k⊥) = q(1 − x, k⊥) =
3M3

V

16π(k2
⊥

+M2
V /4)

5/2
θ(x)θ(1 − x)

Quark propagator in the coordinate representation:

A(x) =
48 + 24MV

√
−x2 − 6M2

V x
2 +M3

V (−x2)3/2

96π2x4
exp(−MV

√

−x2/2)

B(x) = 〈qq〉/(4Nc) exp(−MS

√

−x2/2)
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Final remarks

1. What has been done? Spectral representation, one loop. All seems to work
in the pion sector: symmetries, anomalies, normalization guaranteed.
Dynamics encoded in the spectral inverse and log moments

2. The method is very simple and predictive, having lots of applications

3. No log(Q2) generated by the low-energy model (factorization property).
This allows for calculations of matrix element for the high-energy processes
(DAs, PDFs, pion transition form factor, ...)

4. Remark: need for QCD evolution of all quantities in order to pass from the
quark model scale Q0 to a high-energy scale Q.

5. Interesting particular realization: VMD SQM

6. The form of the quark propagator: no poles, only cuts

7. More to come: photon and ρ-meson light-cone wave functions, sub-leading
twist pion LCWFs
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Backup slides
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Coupling of electroweak currents

In QCD, the vector and axial currents are: reminder

Jµ,a
V (x) = q̄(x)γµλa

2
q(x), Jµ,a

A (x) = q̄(x)γµγ5
λa

2
q(x)

CVC and PCAC:

∂µJ
µ,a
V (x) = 0, ∂µJ

µ,a
A (x) = q̄(x)M̂0iγ5

λa

2
q(x)

This implies Ward-Takahashi identities, based on

[

J0,a
V (x), q(x′)

]

x0=x′
0

= −λa

2
q(x)δ(~x− ~x′)

[

J0,a
A (x), q(x′)

]

x0=x′
0

= −γ5
λa

2
q(x)δ(~x− ~x′)

A number of results are then obtained essentially for free: pions arise as
Goldstone bosons with standard current-algebra properties, at high energies
parton-model features, such as scaling or the spin-1/2 nature of hadronic
constituents, are recovered
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Vertices with one current

The vector and axial unamputated vertex functions are:

Λµ,a
V,A(p′, p) =

∫

d4xd4x′〈0|T
{

Jµ,a
V,A(0)q(x′)q̄(x)

}

|0〉eip′·x′
−ip·x

WTIs:

(p′ − p)µΛµ,a
V (p′, p) = S(p′)

λa

2
− λa

2
S(p)

(p′ − p)µΛµ,a
A (p′, p) = S(p′)

λa

2
γ5 + γ5

λa

2
S(p)

Delburgo

&

West:

gauge

technique

Solution

Λµ,a
V (p′, p) =

∫

dωρ(ω)
i

/p′ − ω
γµλa

2

i

/p− ω

Λµ,a
A (p′, p) =

∫

dωρ(ω)
i

/p′ − ω

(

γµ − 2ωqµ

q2

)

γ5
λa

2

i

/p− ω
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Pion-quark coupling

Near the pion pole (q2 = 0) we get

Λµ,a
A (p+ q, p) → −q

µ

q2
Λa

π(p+ q, p),

where

Λa
π(p+ q, p) =

∫

dωρ(ω)
i

/p+ q/− ω

ω

fπ
γ5λa

i

/p− ω

We recognize in our formulation the Goldberger-Treiman relation for quarks:

gπ(ω) =
ω

fπ
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“Transverse ambiguity”

The above ansätze fulfill the WTI’s. They are determined up to transverse

pieces.

This ambiguity appears in all effective models. Current conservation fixes
only the longitudinal pieces. Example:

jµ = ψ̄ (f1γµ + if2σµνq
ν)ψ

The condition qµjµ = 0 does not constrain the f2-term, since σµνq
νqµ = 0

from antisymmetry.
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QCD evolution of PDA

All results of the effective, low-energy model, refer to a soft energy scale, Q0.
In order to compare to experimental results, obtained at large scales, Q, the
QCD evolution must be performed. Initial condition:

ϕ(x;Q0) = θ(x)θ(1 − x).

The evolved distribution amplitude reads

ϕ(x;Q) = 6x(1 − x)
∞
∑

n=0

C3/2
n (2x− 1)an(Q)

an(Q) =
2

3

2n+ 3

(n+ 1)(n+ 2)

(

α(Q2)

α(Q2
0)

)γ
(0)
n /(2β0)

where C
3/2
n are the Gegenbauer polynomials, γ

(0)
n are appropriate anomalous

dimensions, and β0 = 9.

Results extracted from the experimental data of CLEO provide
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a2(2.4GeV) = 0.12 ± 0.03, which we use to fix

α(Q = 2.4GeV)/α(Q0) = 0.15 ± 0.06

At LO this correspondsto Q0 = 322 ± 45 MeV

Now we can predict

a4(2.4GeV) = 0.06 ± 0.02 (exp : − 0.14 ± 0.03 ∓ 0.09)

a6(2.4GeV) = 0.02 ± 0.01

Encouraging, with leading-twist and LO QCD evolution!
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QCD evolution of PDF

The QCD evolution of the constant PDF has been treated in detail by
Davidson & ERA at LO and NLO. In particular, the non-singlet contribution
to the energy-momentum tensor evolves as

∫

dxxq(x,Q)
∫

dxxq(x,Q0)
=

(

α(Q)

α(Q0)

)γ
(0)
1 /(2β0)

,

In has been found that at Q2 = 4GeV2 the valence quarks carry 47 ± 0.02%
of the total momentum fraction in the pion. Downward LO evolution yields
that at the scale

Q0 = 313+20
−10MeV

the quarks carry 100% of the momentum. The agreement of the evolved
PDF with the SMRS data analysis is impressive
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