Spectral Quark Model

Wojciech Broniowski

Ljubljana, 1 September 2005

research with Enrique Ruiz Arriola

- ERA + WB, Spectral quark model and low-energy hadron phenomenology, hep-ph/0301202, Phys. Rev. D 67 (2003) 074021
- WB + ERA, Application of chiral quark models to high-energy processes, hep-ph/0410041, Bled 2004, p. 7

[G.V. Efimov and M.A. Ivanov, Int. J. Mod. Phys. A 4 (1989) 2031]

What is a Chiral Quark Model?

Prototype: Nambu-Jona–Lasinio, UV cut-off, interactions $\rightarrow \chi$ SB: massive quarks, Goldstone pions, one-loop (leading- N_c)

more than 20 years of vast applications: low-energy hadron spectroscopy and phenomenology (mesons, baryons, pentaquarks, Gasser-Leutwyler coefficients), high-density matter (2SC,CFL), high temperature matter, soft matrix elements for high-energy processes, ...

The momentum running around the loop is cut

 $k < \Lambda$

Requirements for a quark model

- 1. Give finite values for hadronic observables
- 2. Satisfy the electromagnetic and chiral Ward-Takahashi identities, thus reproducing all necessary symmetry requirements
- 3. Satisfy the anomaly conditions
- 4. Comply to the QCD factorization property, in the sense that the expansion of a correlator at a large Q is a pure twist-expansion, involving only the inverse powers of Q^2 , without the $\log Q^2$ corrections. In other words, scaling violations are due to QCD only, not low-energy physics
- 5. Have usual dispersion relations

WB, Spectral Quark Model

simultaneously

All

from

trivial!

Spectral representation

We introduce the spectral regularization of the chiral quark model, based the (generalized) Lehmann representation for the quark propagator,

$$S(p) = \int_C d\omega \frac{\rho(\omega)}{\not p - \omega}$$

where $\rho(\omega)$ is the spectral function and C denotes a contour in the complex ω plane chosen in a suitable way. Specific realization will be given later on.

Examples: free theory has $\rho(\omega)=\delta(\omega-m),$ perturbative QCD yields at LO

$$\rho(\omega) = \delta(\omega - m) + \operatorname{sign}(\omega) \frac{\alpha_S C_F 1 - \xi}{4\pi} \theta(\omega^2 - m^2)$$

Non-

perturbative?

Quark condensate

$$\langle \bar{q}q \rangle \equiv -iN_c \int \frac{d^4p}{(2\pi)^4} \text{Tr}S(p) = -4iN_c \int d\omega \rho(\omega) \int \frac{d^4p}{(2\pi)^4} \frac{\omega}{p^2 - \omega^2}$$

The integral over p is quadratically divergent, which requires the use of an auxiliary regularization, *removed* at the end

$$\langle \bar{q}q \rangle = -\frac{N_c}{4\pi^2} \int d\omega \omega \rho(\omega) \left[2\Lambda^2 + \omega^2 \log\left(\frac{\omega^2}{4\Lambda^2}\right) + \omega^2 + \mathcal{O}(1/\Lambda) \right]$$

The finiteness of the result at $\Lambda \to \infty$ requires the conditions

$$\int d\omega \omega \rho(\omega) = 0, \quad \int d\omega \omega^3 \rho(\omega) = 0$$

and thus

$$\langle \bar{q}q \rangle = -\frac{N_c}{4\pi^2} \int d\omega \log(\omega^2) \omega^3 \rho(\omega).$$

The spectral condition allowed for rewriting $\log(\omega^2/\Lambda^2)$ as $\log(\omega^2)$, hence no scale dependence (no "dimensional transmutation") is present in the final expression.

With the accepted value of

$$\langle \bar{q}q \rangle = \simeq -(243 \text{ MeV})^3$$

we infer the value of the third log-moment. The negative sign of the quark condensate shows that

$$\int d\omega \log(\omega^2) \omega^3 \rho(\omega) > 0.$$

Vacuum energy density

$$\langle \theta^{\mu\nu} \rangle = -iN_c N_f \int d\omega \rho(\omega) \int \frac{d^4 p}{(2\pi)^4} \times \operatorname{Tr} \frac{1}{\not p - \omega} \left[\frac{1}{2} \left(\gamma^{\mu} p^{\nu} + \gamma^{\nu} p^{\mu} \right) - g^{\mu\nu} (\not p - \omega) \right] = B g^{\mu\nu} + \langle \theta^{\mu\nu} \rangle_0,$$

where $\langle \theta^{\mu\nu} \rangle_0$ is the energy-momentum tensor for the free theory, evaluated with $\rho(\omega) = \delta(\omega)$, and *B* (bag constant) is the vacuum energy density:

$$B = -iN_c N_f \int_C d\omega \rho(\omega) \int \frac{d^4 p}{(2\pi)^4} \frac{\omega^2}{p^2 - \omega^2},$$

The conditions that have to be fulfilled for B to be finite are

$$\rho_2 = 0, \quad \rho_4 = 0$$

Then

$$B = -\frac{N_c N_f}{16\pi^2} \rho_4' \equiv -\frac{N_c N_f}{16\pi^2} \int_C d\omega \log(\omega^2) \omega^4 \rho(\omega)$$

According to the most recent QCD sum rules analysis

$$B = -\frac{9}{32} \langle \frac{\alpha}{\pi} G^2 \rangle = -(224^{+35}_{-70} \text{MeV})^4$$

The negative sign of B enforces

$$\rho_4' > 0$$

[one can go on for other observables] \longrightarrow

Spectral moments

Normalization (at $p \to \infty$ we have $S(p) \to 1/p$):

$$\rho_0 \equiv \int_C d\omega \rho(w) = 1,$$

Finiteness of observables:

$$\rho_n \equiv \int_C d\omega \omega^n \rho(\omega) = 0, \text{ for } n = 1, 2, 3, \dots$$

Observables are given by inverse moments

$$\rho_{-k} \equiv \int_C d\omega \omega^{-k} \rho(\omega), \text{ for } k = 1, 2, 3, \dots$$

as well as by the "log moments",

$$\rho'_n \equiv \int_C d\omega \log(\omega^2) \omega^n \rho(\omega), \text{ for } n = 2, 3, 4, \dots$$

WB, Spectral Quark Model

Such a

 $\rho(\omega)$

and

C exist!

Effective action

The effective action of the model is (in the chiral limit)

$$S_{\text{eff}} = -iN_c \int_C d\omega \rho(\omega) \operatorname{Tr} \log(i D - \omega U^{\gamma_5})$$

with D denoting the covariant derivative and the chiral fields entering $U^{\gamma_5}=\exp(-i\gamma_5\tau\cdot\theta)$

Sightseeing tour \longrightarrow

Elecromagnetic vacuum polarization

$$\begin{split} i\Pi_{VV}^{\mu a,\nu b}(q) &= \delta^{ab} \bigg(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \bigg) \bar{\Pi}_{VV}(q) = \\ &= -N_c \int d\omega \rho(\omega) \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[\frac{i}{\not p - \not q - \omega} \gamma_{\mu} \frac{\lambda_a}{2} \frac{i}{\not p - \omega} \gamma_{\nu} \frac{\lambda_b}{2} \right] \\ \bar{\Pi}_{VV}(q) &= \frac{N_c}{3} \int_C d\omega \rho(\omega) \left\{ -2\omega^2 [I(q^2,\omega) - I(0,\omega)] + q^2 [\frac{1}{3} - I(q^2,\omega)] \right\} \quad \text{transverse!} \\ I(q^2,\omega) &= -\frac{1}{(4\pi)^2} \int_0^1 dx \log \left[\omega^2 + x(1-x)q^2 \right] \end{split}$$

The usual twice-subtracted dispersion relation holds:

$$\bar{\Pi}_V(q^2) = \frac{q^4}{\pi} \int_0^\infty \frac{dt}{t^2} \frac{\mathrm{Im}\bar{\Pi}_V(t)}{t - q^2 - i0^+}$$

This is in contrast to (non-local) quark models formulated in or the popular proper-time regularization

$e^+e^- \rightarrow hadrons$

where e_i is the electric charge of the quark of species *i*. This is the proper asymptotic QCD result, provided

$$\int d\omega \rho(\omega) = 1$$

Pion weak decay

The pion weak-decay constant, defined as

$$\langle 0 \left| J_A^{\mu a}(x) \right| \pi_b(q) \rangle = i f_\pi q_\mu \delta_{a,b} e^{iq \cdot x},$$

can be computed from the axial-axial correlation function. The result is

$$f_{\pi}^2 = 4N_c \int d\omega \rho(\omega) \omega^2 I(0,\omega)$$

A finite value for f_{π} requires the condition $\rho_2 = 0$. Then

$$f_{\pi}^2 = -\frac{N_c}{4\pi^2} \int d\omega \log(\omega^2) \omega^2 \rho(\omega) \equiv -\frac{N_c}{4\pi^2} \rho_2'$$

The value $f_{\pi} = 93$ MeV determines ρ'_2 . The sign is

$$\rho_2' < 0$$

Pion electromagnetic form factor

The electromagnetic form factor for a positively charged pion, $\pi^+ = u \bar{d}$, is defined as

$$\langle \pi^+(p')|J^{\rm em}_{\mu}(0)|\pi^+(p)\rangle = (p^{\mu} + {p'}^{\mu})eF^{\rm em}_{\pi}(q^2)$$

For on-shell massless pions the electromagnetic form factor reads

$$F_{\pi}^{em}(q^2) = \frac{4N_c}{f_{\pi}^2} \int dw \rho(\omega) \omega^2 I(q^2, \omega)$$

The low-momentum expansion is

$$F_{\pi}^{em}(q^2) = 1 + \frac{1}{4\pi^2 f_{\pi}^2} \left(\frac{q^2 \rho_0}{6} + \frac{q^4 \rho_{-2}}{60} + \frac{q^6 \rho_{-4}}{240} + \dots \right)$$

WB, Spectral Quark Model

 $F_{\pi}^{em}(0) = 1$

The mean squared radius reads

$$\langle r_{\pi}^2 \rangle = 6 \frac{dF}{dq^2}|_{q^2=0} = \frac{N_c}{4\pi^2 f_{\pi}^2} \int d\omega \rho(\omega) = \frac{N_c}{4\pi^2 f_{\pi}^2},$$

which coincides with the unregularized-quark-loop result. The numerical value is

$$\langle r^2 \rangle_{\pi}^{\mathrm{em}} \big|_{\mathrm{th}} = 0.34 \mathrm{fm}^2, \qquad \langle r^2 \rangle_{\pi}^{\mathrm{em}} \big|_{\mathrm{exp}} = 0.44 \mathrm{fm}^2,$$

which is a reasonable agreement (χ PT corrections).

The knowledge of the pion electromagnetic form factor allows to determine the even negative moments of $\rho(\omega)$.

Twist expansion and spectral conditions

In the limit of large momentum

$$F_{\pi}^{em}(q^2) \sim \frac{N_c}{4\pi^2 f_{\pi}^2} \int d\omega \rho(\omega) \omega^2 \{2 - \frac{1}{\epsilon} - \log(q^2) + \frac{2\omega^2}{q^2} \left[\log(-q^2/\omega^2) + 1\right] + \frac{2\omega^4}{q^4} \left[\log(-q^2/\omega^2) - \frac{1}{2}\right] \dots \}$$

With help of the spectral conditions for $n = 2, 4, 6, \dots$ we get

 $F_{\pi}^{em}(q^2) \sim -\frac{N_c}{4\pi^2 f^2} \left| \frac{2\rho'_4}{q^2} + \frac{2\rho'_6}{q^4} + \frac{4\rho'_8}{q^6} + \dots \right|$

All spectral conditions needed!

The imposition of the spectral conditions removed all the logs from the expansion, leaving a pure expansion in inverse powers of q^2 !

Anomalous decay $\pi^0 \rightarrow \gamma \gamma$

which coincides with the standard QCD result!

Pion-photon transition form factor

For two off-shell photons with momenta q_1 and q_2 one defines the asymmetry, A, and the total virtuality, Q^2 :

$$A = \frac{q_1^2 - q_2^2}{q_1^2 + q_2^2}, \qquad -1 \le A \le 1, \quad Q^2 = -(q_1^2 + q_2^2)$$

At the soft pion point we find the expansion

$$F_{\pi\gamma\gamma}(Q^2, A) = -\frac{1}{2\pi^2 f_\pi} \int_0^1 dx \left[\frac{2\rho_2'}{Q^2(1 - A^2(2x - 1)^2)} + \dots \right]$$

We can confront this with the standard twist decomposition of the pion transition form factor ,

$$F_{\gamma\gamma\pi}(Q^2, A) = J^{(2)}(A)\frac{1}{Q^2} + J^{(4)}(A)\frac{1}{Q^4} + \dots,$$

Brodsky-Lepage, Praszałowicz-Rostworowski, Dorokhov

which yields

$$J^{(2)}(A) = \frac{4f_{\pi}}{N_c} \int_0^1 dx \frac{\varphi(x;Q_0)}{1 - (2x - 1)^2 A^2}$$

with the leading-twist pion distribution amplitude $\varphi(x;Q_0) = 1$

Pion light-cone wave function

The approach yields the following light-cone pion wave function:

$$\Psi(x,k_{\perp}) = \frac{N_c}{4\pi^3 f_{\pi}^2} \int_C d\omega \rho(\omega) \frac{\omega^2}{k_{\perp}^2 + \omega^2} \theta(x) \theta(1-x)$$

(at the low-energy scale of the model, Q_0). It has correct support and normalization, since $\int d^2k_{\perp}\Psi(x,k_{\perp}) = \varphi(x) = 1$. At $k_{\perp} = 0$ it satisfies the condition:

$$\Psi(x,0) = \frac{N_c}{\pi f_{\pi}} F_{\pi\gamma\gamma}(0,0) = \frac{N_c}{4\pi^3 f_{\pi}^2}$$

In QCD one has a similar relation holding for quantities integrated over \boldsymbol{x}

 $\mathsf{QCD} \ \mathsf{evolution} \ \longrightarrow \\$

[details in ERA+WB, Phys. Rev. **D66**(2002)094016]

The $\gamma \to \pi^+ \pi^0 \pi^-$ decay

This is an example of a low-energy process involving a quark box diagram, which similarly to the neutral pion decay is related to the QCD anomaly in the soft pion limit. The amplitude for $\gamma(q, e) \rightarrow \pi^+(p_1)\pi^0(p_2)\pi^-(p_3)$ is

$$T_{\gamma(q,\varepsilon)\to\pi^+(p_1)\pi^0(p_2)\pi^-(p_3)} \equiv F(p_1,p_2,p_3)\varepsilon_{\alpha\beta\sigma\tau}e^{\alpha}p_1^{\beta}p_2^{\sigma}p_3^{\tau}.$$

In the limit of all momenta going to zero we get (immediately!), with the spectral normalization condition,

$$F(0,0,0) = \frac{1}{4\pi^2 f_\pi^3} \int d\omega \rho(\omega) = \frac{1}{4\pi^2 f_\pi^3}$$

which is the correct result!

Pion structure function

We take π^+ for definiteness and get	Davidson
$u_{\pi}(x) = \overline{d}_{\pi}(1-x) = \theta(x)\theta(1-x).$	&
$\omega_{\mathcal{M}}(\omega) = \omega_{\mathcal{M}}(1 - \omega) = \sigma(\omega) \sigma(1 - \omega),$	Arriola
The k_{\perp} -unintegrated parton distribution is equal to	in
$q(x,k_{\perp}) = \frac{N_c}{4\pi^3 f_{\pi}^2} \int d\omega \rho(\omega) \frac{\omega^2}{k_{\perp}^2 + \omega^2} \theta(x) \theta(1-x),$	NJL
hence (at Q_0) one has an interesting relation	
$q(x,k_{\perp}) = \bar{q}(1-x,k_{\perp}) = \Psi(x,k_{\perp}), q(x) = \varphi(x).$	
The first moment of the PDF is responsible for the momentum sum rule. We find	quarks
	COKKU

$$\int_0^1 dx \, xq(x) = \int_0^1 dx \, x\bar{q}(x) = \frac{1}{2}.$$
 carry all

momentum

Résumé

Spectral condition	Physical significance
normalization	
$\rho_0 = 1$	proper normalization of the quark propagator
	preservation of anomalies
	proper normalization of the pion distribution amplitude
	proper normalization of the pion structure function
	reproduction of the large- N_c quark-model values
	of the Gasser-Leutwyler coefficients
	relation $M_V^2=24\pi^2 f_\pi^2/N_c$ in the VMD model
positive moments	
$\rho_1 = 0$	finiteness of the quark condensate, $\langle ar{q}q angle$
	vanishing quark mass at asymptotic Euclidean momenta,
$\rho_2 = 0$	finiteness of the vacuum energy density, B
	finiteness of the pion decay constant, f_π
$\rho_3 = 0$	finiteness of the quark condensate, $\langle ar q q angle$
$\rho_4 = 0$	finiteness of the vacuum energy density, B
$ \rho_n = 0, \ n = 2, 4\dots $	absence of logs in the twist expansion of vector amplitudes
$ \rho_n = 0, \ n = 5, 7\dots $	finiteness of nonlocal quark condensates, $\langle ar{q}(\partial^2)^{(n-3)/2}q angle$
	absence of logs the twist expansion of the scalar pion form factor

Spectral condition	Physical significance
negative moments	
$ \rho_{-2} > 0 $	positive quark wave-function normalization at vanishing momentum
$\rho_{-1}/\rho_{-2} > 0$	positive value of the quark mass at vanishing momentum, $M(0)>0$
ρ_{-n}	low-momentum expansion of correlators
log-moments	
$\rho_2' < 0$	$f_{\pi}^2 = -N_c / (4\pi^2) \rho_2'$
$\rho_3' > 0$	negative value of the quark condensate, $\langle ar{q}q angle = -N_c/(4\pi^2) ho_3'$
$\rho_4' > 0$	negative value of the vacuum energy density, $B=-N_c/(4\pi^2) ho_4'$
$\rho_5' < 0$	positive value of the squared vacuum virtuality of the quark,
	$\lambda_q^2 = - ho_5'/ ho_3'$
$ ho_n'$	high-momentum (twist) expansion of correlators

Vector-meson dominance in SQM

Now we construct explicitly an example of $\rho(\omega)$ doing the job. Vector-meson dominance (VMD) of the pion form factor is assumed:

$$F_V^{\exp}(t) = \frac{M_V^2}{M_V^2 + t}.$$

with $M_V = m_{\rho}$. In our approach

$$F_V^{\text{SQM}}(t) = \frac{N_c}{4\pi^2 f_\pi^2} \sum_{n=1}^\infty \rho_{2-2n} \frac{2^{-2n-1} \sqrt{\pi} \Gamma(n+1)}{n \Gamma(n+3/2)} \left(-t\right)^n.$$

Comparison yields

$$\rho_{2-2k} = \frac{2^{2k+3}\pi^{3/2}f_{\pi}^2 k \Gamma(k+3/2)}{N_c M_V^{2k}}, k = 1, 2, 3, \dots$$

In particular, the normalization condition, $\rho_0 = 1$, yields

$$M_V^2 = \frac{24\pi^2 f_\pi^2}{N_c}$$

This relation is usually obtained when matching chiral quark models to VMD, yielding $M_V = 826 \text{ MeV}$ with $f_{\pi} = 93 \text{ MeV}$, and $M_V = 764 \text{ MeV}$ with $f_{\pi} = 86 \text{ MeV}$ (in the chiral limit).

The positive even moments are obtained by analytic continuation in the index n. They fulfill the spectral conditions of vanishing of the positive moments since $\Gamma(n)$ has single poles at non-positive integers, n = 0, -1, -2, ... Miracle!

$$\rho_{2n} = 0, \qquad n = 1, 2, 3 \dots$$

For the even log-moments we have

$$\rho_{2n}' = \left(-\frac{M_V^2}{4}\right)^n \frac{\Gamma(n) \Gamma\left(\frac{5}{2} - n\right)}{\Gamma(\frac{5}{2})}, \qquad n = 1, 2, 3 \dots$$

The first few values are

$$\rho_2' = -\frac{4f^2\pi^2}{N_c}, \quad \rho_4' = \frac{2f^2M_V^2\pi^2}{N_c}$$

We may write the following interesting relation coming out from VMD and the spectral approach:

$$B = -\frac{9\pi^2 f_{\pi}^4}{N_c} = -\frac{N_c M_V^4}{64\pi^2} = -(202 - 217 \text{ MeV})^4$$

which agrees within errors with the QCD SR estimate.

The inverse problem

The mathematical problem is now to invert the formula

$$\rho_{2n} = \int_C d\omega \omega^{2n} \rho_V(\omega)$$

The solution is given by the following surprisingly simple function

$$\rho_V(\omega) = \frac{1}{2\pi i} \frac{1}{\omega} \frac{1}{(1 - 4\omega^2/M_V^2)^{5/2}}.$$

The function $\rho_V(\omega)$ has a single pole at the origin and branch cuts starting at \pm half the meson mass, $\omega = \pm M_V/2$.

$\mathsf{contour}\ C$

Scalar spectral function

 $\rho = \rho_V + \rho_S$

For the case of the scalar spectral function (controling the odd moments) we proceed heuristically, by proposing

$$\rho_S(\omega) = \frac{1}{2\pi i} \frac{12\rho'_3}{M_S^4 (1 - 4\omega^2/M_S^2)^{5/2}}$$

where the normalization is chosen in such a way that $\rho'_3 = -4\pi^2 \langle \bar{q}q \rangle /N_c$.

The analytic structure of $\rho_S(\omega)$ is similar to the case of $\rho_V(\omega)$, except for the absence of the pole at $\omega = 0$.

The quark propagator

$$S(p) = A(p)\not p + B(p) = Z(p)\frac{\not p + M(p)}{p^2 - M^2(p)}$$

$$A(p^2) \equiv \int_C d\omega \frac{\rho_V(\omega)}{p^2 - \omega^2} = \frac{1}{p^2} \left[1 - \frac{1}{(1 - 4p^2/M_V^2)^{5/2}} \right] = -\frac{10}{M_V^2} - \frac{70p^2}{M_V^4} + \dots$$

$$B(p^2) \equiv \int_C d\omega \frac{\omega \rho_S(\omega)}{p^2 - \omega^2} = \frac{48\pi^2 \langle \bar{q}q \rangle}{M_S^4 N_c (1 - 4p^2/M_S^2)^{5/2}}$$

No poles in the whole complex plane! Only branch cuts starting at $p^2 = 4M_{V/S}^2$ (obvious, since poles would lead to cuts in the pion form factor)

The absence of poles is sometimes called "analytic confinement"

 $M(Q^2)$ decreases as $1/Q^3$ at large Euclidean momenta, which is favored by the recent lattice calculations. The χ^2 fit results in the following optimum values,

$$M_0 = 303 \pm 24 \text{ MeV},$$

 $M_S = 970 \pm 21 \text{ MeV},$

with the optimum value of χ^2 per degree of freedom equal to 0.72. The corresponding value of the quark condensate is

$$\langle \bar{q}q \rangle = -(243.0^{+0.1}_{-0.8} \text{ MeV})^3.$$

Other predictions

Pion light-cone wave function:

$$\Psi(x,k_{\perp}) = \frac{3M_V^3}{16\pi (k_{\perp}^2 + M_V^2/4)^{5/2}} \theta(x)\theta(1-x)$$

0

The average transverse momentum squared is equal to

$$\langle k_{\perp}^2 \rangle \equiv \int d^2 k_{\perp} \, k_{\perp}^2 \Psi(x, k_{\perp}) = \frac{M_V^2}{2}$$

which numerically gives $\langle k_{\perp}^2 \rangle = (544 \text{ MeV})^2$ (at Q_0). Unintegrated PDF:

$$q(x,k_{\perp}) = \overline{q}(1-x,k_{\perp}) = \frac{3M_V^3}{16\pi(k_{\perp}^2 + M_V^2/4)^{5/2}}\theta(x)\theta(1-x)$$

Quark propagator in the coordinate representation:

$$A(x) = \frac{48 + 24M_V\sqrt{-x^2} - 6M_V^2 x^2 + M_V^3 (-x^2)^{3/2}}{96\pi^2 x^4} \exp(-M_V\sqrt{-x^2/2})$$

$$B(x) = \langle \overline{q}q \rangle / (4N_c) \exp(-M_S \sqrt{-x^2/2})$$

Final remarks

- What has been done? Spectral representation, one loop. All seems to work in the pion sector: symmetries, anomalies, normalization guaranteed. Dynamics encoded in the spectral inverse and log moments
- 2. The method is very simple and predictive, having lots of applications
- 3. No $\log(Q^2)$ generated by the low-energy model (factorization property). This allows for calculations of matrix element for the high-energy processes (DAs, PDFs, pion transition form factor, ...)
- 4. Remark: need for QCD evolution of all quantities in order to pass from the quark model scale Q_0 to a high-energy scale Q.
- 5. Interesting particular realization: VMD SQM
- 6. The form of the quark propagator: no poles, only cuts
- 7. More to come: photon and ρ -meson light-cone wave functions, sub-leading twist pion LCWFs

Backup slides

Coupling of electroweak currents

In QCD, the vector and axial currents are:

$$J_V^{\mu,a}(x) = \bar{q}(x)\gamma^{\mu}\frac{\lambda_a}{2}q(x), \quad J_A^{\mu,a}(x) = \bar{q}(x)\gamma^{\mu}\gamma_5\frac{\lambda_a}{2}q(x)$$

CVC and PCAC:

$$\partial_{\mu}J_{V}^{\mu,a}(x) = 0, \quad \partial_{\mu}J_{A}^{\mu,a}(x) = \bar{q}(x)\hat{M}_{0}i\gamma_{5}\frac{\lambda_{a}}{2}q(x)$$

This implies Ward-Takahashi identities, based on

$$\left[J_V^{0,a}(x), q(x')\right]_{x_0=x'_0} = -\frac{\lambda_a}{2}q(x)\delta(\vec{x} - \vec{x}')$$

$$\left[J_A^{0,a}(x), q(x')\right]_{x_0 = x'_0} = -\gamma_5 \frac{\lambda_a}{2} q(x) \delta(\vec{x} - \vec{x'})$$

A number of results are then obtained essentially for free: pions arise as Goldstone bosons with standard current-algebra properties, at high energies parton-model features, such as scaling or the spin-1/2 nature of hadronic constituents, are recovered

WB, Spectral Quark Model

reminder

Vertices with one current

The vector and axial unamputated vertex functions are:

$$\Lambda_{V,A}^{\mu,a}(p',p) = \int d^4x d^4x' \langle 0|T\left\{J_{V,A}^{\mu,a}(0)q(x')\bar{q}(x)\right\}|0\rangle e^{ip'\cdot x'-ip\cdot x}$$

WTIs:

Solution

$$(p'-p)_{\mu}\Lambda_{V}^{\mu,a}(p',p) = S(p')\frac{\lambda_{a}}{2} - \frac{\lambda_{a}}{2}S(p)$$
$$(p'-p)_{\mu}\Lambda_{A}^{\mu,a}(p',p) = S(p')\frac{\lambda_{a}}{2}\gamma_{5} + \gamma_{5}\frac{\lambda_{a}}{2}S(p)$$

Delburgo & West: gauge technique

$$\Lambda_A^{\mu,a}(p',p) = \int d\omega \rho(\omega) \frac{i}{p'-\omega} \left(\gamma^\mu - \frac{2\omega q^\mu}{q^2}\right) \gamma_5 \frac{\lambda_a}{2} \frac{i}{p-\omega}$$

 $\Lambda_V^{\mu,a}(p',p) = \int d\omega \rho(\omega) \frac{i}{p'-\omega} \gamma^{\mu} \frac{\lambda_a}{2} \frac{i}{p-\omega}$

Pion-quark coupling

Near the pion pole $(q^2 = 0)$ we get

$$\Lambda^{\mu,a}_A(p+q,p) \to -\frac{q^\mu}{q^2} \Lambda^a_\pi(p+q,p),$$

where

$$\Lambda^{a}_{\pi}(p+q,p) = \int d\omega \rho(\omega) \frac{i}{\not p + \not q - \omega} \frac{\omega}{f_{\pi}} \gamma_{5} \lambda_{a} \frac{i}{\not p - \omega}$$

We recognize in our formulation the Goldberger-Treiman relation for quarks:

$$g_{\pi}(\omega) = \frac{\omega}{f_{\pi}}$$

"Transverse ambiguity"

The above ansätze fulfill the WTI's. They are determined up to *transverse pieces*.

This ambiguity appears in all effective models. Current conservation fixes only the longitudinal pieces. Example:

$$j_{\mu} = \bar{\psi} \left(f_1 \gamma_{\mu} + i f_2 \sigma_{\mu\nu} q^{\nu} \right) \psi$$

The condition $q^{\mu}j_{\mu} = 0$ does not constrain the f_2 -term, since $\sigma_{\mu\nu}q^{\nu}q^{\mu} = 0$ from antisymmetry.

QCD evolution of PDA

All results of the effective, low-energy model, refer to a soft energy scale, Q_0 . In order to compare to experimental results, obtained at large scales, Q, the QCD evolution must be performed. Initial condition:

$$\varphi(x;Q_0) = \theta(x)\theta(1-x).$$

The evolved distribution amplitude reads

$$\varphi(x;Q) = 6x(1-x)\sum_{n=0}^{\infty} C_n^{3/2}(2x-1)a_n(Q)$$
$$a_n(Q) = \frac{2}{3}\frac{2n+3}{(n+1)(n+2)} \left(\frac{\alpha(Q^2)}{\alpha(Q_0^2)}\right)^{\gamma_n^{(0)}/(2\beta_0)}$$

where $C_n^{3/2}$ are the Gegenbauer polynomials, $\gamma_n^{(0)}$ are appropriate anomalous dimensions, and $\beta_0 = 9$.

Results extracted from the experimental data of CLEO provide

 $a_2(2.4 \text{GeV}) = 0.12 \pm 0.03$, which we use to fix

$$\alpha(Q = 2.4 \text{GeV}) / \alpha(Q_0) = 0.15 \pm 0.06$$

At LO this corresponds o $Q_0 = 322 \pm 45$ MeV

Now we can predict

$$a_4(2.4 \text{GeV}) = 0.06 \pm 0.02 \ (\exp : -0.14 \pm 0.03 \mp 0.09)$$

 $a_6(2.4 \text{GeV}) = 0.02 \pm 0.01$

Encouraging, with leading-twist and LO QCD evolution!

QCD evolution of PDF

The QCD evolution of the constant PDF has been treated in detail by Davidson & ERA at LO and NLO. In particular, the non-singlet contribution to the energy-momentum tensor evolves as

$$\frac{\int dx \, xq(x,Q)}{\int dx \, xq(x,Q_0)} = \left(\frac{\alpha(Q)}{\alpha(Q_0)}\right)^{\gamma_1^{(0)}/(2\beta_0)},$$

In has been found that at $Q^2 = 4 \text{GeV}^2$ the valence quarks carry $47 \pm 0.02\%$ of the total momentum fraction in the pion. Downward LO evolution yields that at the scale

$$Q_0 = 313^{+20}_{-10} \mathrm{MeV}$$

the quarks carry 100% of the momentum. The agreement of the evolved PDF with the SMRS data analysis is impressive