Spectral Quark Model

Wojciech Broniowski

Ljubljana, 1 September 2005

research with Enrique Ruiz Arriola

- ERA + WB, Spectral quark model and low-energy hadron phenomenology, hep-ph/0301202, Phys. Rev. D 67 (2003) 074021
- WB + ERA, Application of chiral quark models to high-energy processes, hep-ph/0410041, Bled 2004, p. 7
[G.V. Efimov and M.A. Ivanov, Int. J. Mod. Phys. A 4 (1989) 2031]

What is a Chiral Quark Model?

Prototype: Nambu-Jona-Lasinio, UV cut-off, interactions \rightarrow χ SB: massive quarks, Goldstone pions, one-loop (leading- N_{c})
more than 20 years of vast applications: low-energy hadron spectroscopy and phenomenology (mesons, baryons, pentaquarks, Gasser-Leutwyler coefficients), high-density matter (2SC,CFL), high temperature matter, soft matrix elements for high-energy processes, ...

The momentum running around the loop is cut

$$
k<\Lambda
$$

Requirements for a quark model

1. Give finite values for hadronic observables
2. Satisfy the electromagnetic and chiral Ward-Takahashi identities, thus reproducing all necessary symmetry requirements
3. Satisfy the anomaly conditions
4. Comply to the QCD factorization property, in the sense that the expansion of a correlator at a large Q is a pure twist-expansion, involving only the inverse powers of Q^{2}, without the $\log Q^{2}$ corrections. In other words, scaling violations are due to QCD only, not low-energy physics
5. Have usual dispersion relations

Spectral representation

We introduce the spectral regularization of the chiral quark model, based the (generalized) Lehmann representation for the quark propagator,

$$
S(p)=\int_{C} d \omega \frac{\rho(\omega)}{p p-\omega}
$$

where $\rho(\omega)$ is the spectral function and C denotes a contour in the complex ω plane chosen in a suitable way. Specific realization will be given later on.

Examples: free theory has $\rho(\omega)=\delta(\omega-m)$, perturbative QCD yields at LO

Non-

$$
\rho(\omega)=\delta(\omega-m)+\operatorname{sign}(\omega) \frac{\alpha_{S} C_{F}}{4 \pi} \frac{1-\xi}{\omega} \theta\left(\omega^{2}-m^{2}\right)
$$

perturbative?

Quark condensate

$\langle\bar{q} q\rangle \equiv-i N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr} S(p)=-4 i N_{c} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4} p^{2}-\omega^{2}}$
The integral over p is quadratically divergent, which requires the use of an auxiliary regularization, removed at the end
$\langle\bar{q} q\rangle=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \omega \rho(\omega)\left[2 \Lambda^{2}+\omega^{2} \log \left(\frac{\omega^{2}}{4 \Lambda^{2}}\right)+\omega^{2}+\mathcal{O}(1 / \Lambda)\right]$

The finiteness of the result at $\Lambda \rightarrow \infty$ requires the conditions

$$
\int d \omega \omega \rho(\omega)=0, \quad \int d \omega \omega^{3} \rho(\omega)=0
$$

and thus

$$
\langle\bar{q} q\rangle=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \log \left(\omega^{2}\right) \omega^{3} \rho(\omega) .
$$

The spectral condition allowed for rewriting $\log \left(\omega^{2} / \Lambda^{2}\right)$ as $\log \left(\omega^{2}\right)$, hence no scale dependence (no "dimensional transmutation") is present in the final expression.

With the accepted value of

$$
\langle\bar{q} q\rangle=\simeq-(243 \mathrm{MeV})^{3}
$$

we infer the value of the third log-moment. The negative sign of the quark condensate shows that

$$
\int d \omega \log \left(\omega^{2}\right) \omega^{3} \rho(\omega)>0
$$

Vacuum energy density

$$
\begin{aligned}
\left\langle\theta^{\mu \nu}\right\rangle= & -i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \times \\
& \operatorname{Tr} \frac{1}{p-\omega}\left[\frac{1}{2}\left(\gamma^{\mu} p^{\nu}+\gamma^{\nu} p^{\mu}\right)-g^{\mu \nu}(p-\omega)\right]=B g^{\mu \nu}+\left\langle\theta^{\mu \nu}\right\rangle_{0},
\end{aligned}
$$

where $\left\langle\theta^{\mu \nu}\right\rangle_{0}$ is the energy-momentum tensor for the free theory, evaluated with $\rho(\omega)=\delta(\omega)$, and B (bag constant) is the vacuum energy density:

$$
B=-i N_{c} N_{f} \int_{C} d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\omega^{2}}{p^{2}-\omega^{2}},
$$

The conditions that have to be fulfilled for B to be finite are

$$
\rho_{2}=0, \quad \rho_{4}=0
$$

Then

$$
B=-\frac{N_{c} N_{f}}{16 \pi^{2}} \rho_{4}^{\prime} \equiv-\frac{N_{c} N_{f}}{16 \pi^{2}} \int_{C} d \omega \log \left(\omega^{2}\right) \omega^{4} \rho(\omega)
$$

According to the most recent QCD sum rules analysis

$$
B=-\frac{9}{32}\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle=-\left(224_{-70}^{+35} \mathrm{MeV}\right)^{4}
$$

The negative sign of B enforces

$$
\rho_{4}^{\prime}>0
$$

[one can go on for other observables]

Spectral moments

Normalization (at $p \rightarrow \infty$ we have $S(p) \rightarrow 1 / p p$):

$$
\rho_{0} \equiv \int_{C} d \omega \rho(w)=1
$$

Finiteness of observables:

$$
\rho_{n} \equiv \int_{C} d \omega \omega^{n} \rho(\omega)=0, \quad \text { for } n=1,2,3, \ldots
$$

Observables are given by inverse moments

Such
a
$\rho(\omega)$ and

Effective action

The effective action of the model is (in the chiral limit)

$$
S_{\mathrm{eff}}=-i N_{c} \int_{C} d \omega \rho(\omega) \operatorname{Tr} \log \left(i \not D-\omega U^{\gamma_{5}}\right)
$$

with D denoting the covariant derivative and the chiral fields entering $U^{\gamma_{5}}=\exp \left(-i \gamma_{5} \tau \cdot \theta\right)$

Sightseeing tour \longrightarrow

Elecromagnetic vacuum polarization

$$
\begin{aligned}
i \Pi_{V V}^{\mu a, \nu b}(q) & =\delta^{a b}\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right) \bar{\Pi}_{V V}(q)= \\
& =-N_{c} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-\not q-\omega} \gamma_{\mu} \frac{\lambda_{a}}{2} \frac{i}{p-\omega} \gamma_{\nu} \frac{\lambda_{b}}{2}\right] \\
\bar{\Pi}_{V V}(q) & =\frac{N_{c}}{3} \int_{C} d \omega \rho(\omega)\left\{-2 \omega^{2}\left[I\left(q^{2}, \omega\right)-I(0, \omega)\right]+q^{2}\left[\frac{1}{3}-I\left(q^{2}, \omega\right)\right]\right\} \\
I\left(q^{2}, \omega\right) & =-\frac{1}{(4 \pi)^{2}} \int_{0}^{1} d x \log \left[\omega^{2}+x(1-x) q^{2}\right]
\end{aligned}
$$

The usual twice-subtracted dispersion relation holds:

$$
\bar{\Pi}_{V}\left(q^{2}\right)=\frac{q^{4}}{\pi} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\operatorname{Im} \bar{\Pi}_{V}(t)}{t-q^{2}-i 0^{+}}
$$

This is in contrast to (non-local) quark models formulated in or the popular proper-time regularization

$e^{+} e^{-} \rightarrow$ hadrons

At large s we find

$$
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right) \rightarrow \frac{4 \pi \alpha_{\mathrm{QED}}^{2}}{3 s}\left(\sum_{i} e_{i}^{2}\right) \int d \omega \rho(\omega)
$$

proportional to
$\operatorname{Im} \bar{\Pi}_{V}$
where e_{i} is the electric charge of the quark of species i. This is the proper asymptotic QCD result, provided

$$
\int d \omega \rho(\omega)=1
$$

Pion weak decay

The pion weak-decay constant, defined as

$$
\langle 0| J_{A}^{\mu a}(x)\left|\pi_{b}(q)\right\rangle=i f_{\pi} q_{\mu} \delta_{a, b} e^{i q \cdot x}
$$

can be computed from the axial-axial correlation function. The result is

$$
f_{\pi}^{2}=4 N_{c} \int d \omega \rho(\omega) \omega^{2} I(0, \omega)
$$

A finite value for f_{π} requires the condition $\rho_{2}=0$. Then

$$
f_{\pi}^{2}=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \log \left(\omega^{2}\right) \omega^{2} \rho(\omega) \equiv-\frac{N_{c}}{4 \pi^{2}} \rho_{2}^{\prime}
$$

The value $f_{\pi}=93 \mathrm{MeV}$ determines ρ_{2}^{\prime}. The sign is

$$
\rho_{2}^{\prime}<0
$$

Pion electromagnetic form factor

The electromagnetic form factor for a positively charged pion, $\pi^{+}=u \bar{d}$, is defined as

$$
\left\langle\pi^{+}\left(p^{\prime}\right)\right| J_{\mu}^{\mathrm{em}}(0)\left|\pi^{+}(p)\right\rangle=\left(p^{\mu}+p^{\prime \mu}\right) e F_{\pi}^{\mathrm{em}}\left(q^{2}\right)
$$

For on-shell massless pions the electromagnetic form factor reads

$$
F_{\pi}^{e m}\left(q^{2}\right)=\frac{4 N_{c}}{f_{\pi}^{2}} \int d w \rho(\omega) \omega^{2} I\left(q^{2}, \omega\right)
$$

The low-momentum expansion is

$$
F_{\pi}^{e m}(0)=1
$$

$$
F_{\pi}^{e m}\left(q^{2}\right)=1+\frac{1}{4 \pi^{2} f_{\pi}^{2}}\left(\frac{q^{2} \rho_{0}}{6}+\frac{q^{4} \rho_{-2}}{60}+\frac{q^{6} \rho_{-4}}{240}+\ldots\right)
$$

The mean squared radius reads

$$
\left\langle r_{\pi}^{2}\right\rangle=\left.6 \frac{d F}{d q^{2}}\right|_{q^{2}=0}=\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}} \int d \omega \rho(\omega)=\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}},
$$

which coincides with the unregularized-quark-loop result. The numerical value is

$$
\left.\left\langle r^{2}\right\rangle_{\pi}^{\mathrm{em}}\right|_{\mathrm{th}}=0.34 \mathrm{fm}^{2},\left.\quad\left\langle r^{2}\right\rangle_{\pi}^{\mathrm{em}}\right|_{\exp }=0.44 \mathrm{fm}^{2},
$$

which is a reasonable agreement (χ PT corrections).
The knowledge of the pion electromagnetic form factor allows to determine the even negative moments of $\rho(\omega)$.

Twist expansion and spectral conditions

In the limit of large momentum

$$
\begin{aligned}
F_{\pi}^{e m}\left(q^{2}\right) \sim & \frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}} \int d \omega \rho(\omega) \omega^{2}\left\{2-\frac{1}{\epsilon}-\log \left(q^{2}\right)+\right. \\
& \left.\frac{2 \omega^{2}}{q^{2}}\left[\log \left(-q^{2} / \omega^{2}\right)+1\right]+\frac{2 \omega^{4}}{q^{4}}\left[\log \left(-q^{2} / \omega^{2}\right)-\frac{1}{2}\right] \ldots\right\}
\end{aligned}
$$

With help of the spectral conditions for $n=2,4,6, \ldots$ we get

$$
F_{\pi}^{e m}\left(q^{2}\right) \sim-\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}}\left[\frac{2 \rho_{4}^{\prime}}{q^{2}}+\frac{2 \rho_{6}^{\prime}}{q^{4}}+\frac{4 \rho_{8}^{\prime}}{q^{6}}+\ldots\right]
$$

The imposition of the spectral conditions removed all the logs from the expansion, leaving a pure expansion in inverse powers of q^{2} !

Anomalous decay $\pi^{0} \rightarrow \gamma \gamma$

$$
\begin{aligned}
& \Gamma_{\pi^{0} \gamma \gamma}^{\mu \nu}\left(q_{1}, q_{2}\right)=\epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} F_{\pi \gamma \gamma}\left(q_{1}, q_{2}\right)=-N_{c} \int d \omega \rho(w) \int \frac{d^{4} k}{(2 \pi)^{4}} \times \\
& \operatorname{Tr}\left[-\frac{\omega}{f_{\pi}} \gamma_{5} \tau_{3} \frac{i}{\not / k-\not q_{2}-\omega} i \hat{Q} \gamma^{\mu} \frac{i}{\not /-\omega} i \hat{Q} \gamma^{\nu} \frac{i}{\not /-\not q_{1}-\omega}\right]+\text { crossed }
\end{aligned}
$$

where $\hat{Q}=\frac{1}{2} N_{c}+\frac{\tau_{3}}{2}$. We find (as if no regulator were present) Blin, Hiller

$$
\begin{aligned}
F_{\pi \gamma \gamma}(0,0) & =\frac{8}{f_{\pi}} \int d \omega \rho(\omega) \omega^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{\left(k^{2}-\omega^{2}\right)^{3}} \\
& =\frac{1}{4 \pi^{2} f_{\pi}} \int d \omega \rho(\omega)=\frac{1}{4 \pi^{2} f_{\pi}}
\end{aligned}
$$

which coincides with the standard QCD result!

Pion-photon transition form factor

For two off-shell photons with momenta q_{1} and q_{2} one defines the asymmetry, A, and the total virtuality, Q^{2} :

$$
A=\frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}, \quad-1 \leq A \leq 1, \quad Q^{2}=-\left(q_{1}^{2}+q_{2}^{2}\right)
$$

At the soft pion point we find the expansion

$$
F_{\pi \gamma \gamma}\left(Q^{2}, A\right)=-\frac{1}{2 \pi^{2} f_{\pi}} \int_{0}^{1} d x\left[\frac{2 \rho_{2}^{\prime}}{Q^{2}\left(1-A^{2}(2 x-1)^{2}\right)}+\ldots\right]
$$

We can confront this with the standard twist decomposition of the pion transition form factor,

$$
F_{\gamma \gamma \pi}\left(Q^{2}, A\right)=J^{(2)}(A) \frac{1}{Q^{2}}+J^{(4)}(A) \frac{1}{Q^{4}}+\ldots,
$$

which yields

$$
J^{(2)}(A)=\frac{4 f_{\pi}}{N_{c}} \int_{0}^{1} d x \frac{\varphi\left(x ; Q_{0}\right)}{1-(2 x-1)^{2} A^{2}}
$$

Brodsky-
Lepage,
PraszałowiczRostworowski, Dorokhov
with the leading-twist pion distribution amplitude $\varphi\left(x ; Q_{0}\right)=1$

Pion light-cone wave function

The approach yields the following light-cone pion wave function:

$$
\Psi\left(x, k_{\perp}\right)=\frac{N_{c}}{4 \pi^{3} f_{\pi}^{2}} \int_{C} d \omega \rho(\omega) \frac{\omega^{2}}{k_{\perp}^{2}+\omega^{2}} \theta(x) \theta(1-x)
$$

(at the low-energy scale of the model, Q_{0}). It has correct support and normalization, since $\int d^{2} k_{\perp} \Psi\left(x, k_{\perp}\right)=\varphi(x)=1$. At $k_{\perp}=0$ it satisfies the condition:

$$
\Psi(x, 0)=\frac{N_{c}}{\pi f_{\pi}} F_{\pi \gamma \gamma}(0,0)=\frac{N_{c}}{4 \pi^{3} f_{\pi}^{2}}
$$

In QCD one has a similar relation holding for quantities integrated over x QCD evolution \longrightarrow [details in ERA +WB, Phys. Rev. D66(2002)094016]

The $\gamma \rightarrow \pi^{+} \pi^{0} \pi^{-}$decay

This is an example of a low-energy process involving a quark box diagram, which similarly to the neutral pion decay is related to the QCD anomaly in the soft pion limit. The amplitude for $\gamma(q, e) \rightarrow \pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)$ is

$$
T_{\gamma(q, \varepsilon) \rightarrow \pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)} \equiv F\left(p_{1}, p_{2}, p_{3}\right) \varepsilon_{\alpha \beta \sigma \tau} e^{\alpha} p_{1}^{\beta} p_{2}^{\sigma} p_{3}^{\tau} .
$$

In the limit of all momenta going to zero we get (immediately!), with the spectral normalization condition,

$$
F(0,0,0)=\frac{1}{4 \pi^{2} f_{\pi}^{3}} \int d \omega \rho(\omega)=\frac{1}{4 \pi^{2} f_{\pi}^{3}}
$$

which is the correct result!

Pion structure function

We take π^{+}for definiteness and get
Davidson \&

Arriola

$$
q\left(x, k_{\perp}\right)=\frac{N_{c}}{4 \pi^{3} f_{\pi}^{2}} \int d \omega \rho(\omega) \frac{\omega^{2}}{k_{\perp}^{2}+\omega^{2}} \theta(x) \theta(1-x)
$$

hence (at Q_{0}) one has an interesting relation

$$
q\left(x, k_{\perp}\right)=\bar{q}\left(1-x, k_{\perp}\right)=\Psi\left(x, k_{\perp}\right), \quad q(x)=\varphi(x)
$$

The first moment of the PDF is responsible for the momentum sum rule. We find

$$
\int_{0}^{1} d x x q(x)=\int_{0}^{1} d x x \bar{q}(x)=\frac{1}{2} .
$$

quarks
carry
all
momentum

Résumé

Spectral condition

normalization
$\rho_{0}=1$

Physical significance
proper normalization of the quark propagator
preservation of anomalies
proper normalization of the pion distribution amplitude proper normalization of the pion structure function reproduction of the large- N_{c} quark-model values of the Gasser-Leutwyler coefficients relation $M_{V}^{2}=24 \pi^{2} f_{\pi}^{2} / N_{c}$ in the VMD model
positive moments

$\rho_{1}=0$	finiteness of the quark condensate, $\langle\bar{q} q\rangle$ vanishing quark mass at asymptotic Euclidean momenta, finiteness of the vacuum energy density, B $\rho_{2}=0$
finiteness of the pion decay constant, f_{π}	
$\rho_{3}=0$	finiteness of the quark condensate, $\langle\bar{q} q\rangle$
$\rho_{4}=0$	finiteness of the vacuum energy density, B
$\rho_{n}=0, n=2,4 \ldots$	absence of logs in the twist expansion of vector amplitudes
$\rho_{n}=0, n=5,7 \ldots$	finiteness of nonlocal quark condensates, $\left\langle\bar{q}\left(\partial^{2}\right)^{(n-3) / 2} q\right\rangle$ absence of logs the twist expansion of the scalar pion form factor

Spectral condition
 Physical significance

negative moments

$\rho_{-2}>0$	positive quark wave-function normalization at vanishing momentum
$\rho_{-1} / \rho_{-2}>0$	positive value of the quark mass at vanishing momentum, $M(0)>0$
ρ_{-n}	low-momentum expansion of correlators
log-moments	$f_{\pi}^{2}=-N_{c} /\left(4 \pi^{2}\right) \rho_{2}^{\prime}$
$\rho_{2}^{\prime}<0$	negative value of the quark condensate, $\langle\bar{q} q\rangle=-N_{c} /\left(4 \pi^{2}\right) \rho_{3}^{\prime}$
$\rho_{3}^{\prime}>0$	negative value of the vacuum energy density, $B=-N_{c} /\left(4 \pi^{2}\right) \rho_{4}^{\prime}$
$\rho_{4}^{\prime}>0$	positive value of the squared vacuum virtuality of the quark,
$\rho_{5}^{\prime}<0$	$\lambda_{q}^{2}=-\rho_{5}^{\prime} / \rho_{3}^{\prime}$
ρ_{n}^{\prime}	high-momentum (twist) expansion of correlators

Vector-meson dominance in SQM

Now we construct explicitly an example of $\rho(\omega)$ doing the job. Vector-meson dominance (VMD) of the pion form factor is assumed:

$$
F_{V}^{\exp }(t)=\frac{M_{V}^{2}}{M_{V}^{2}+t}
$$

with $M_{V}=m_{\rho}$. In our approach

$$
F_{V}^{\mathrm{SQM}}(t)=\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}} \sum_{n=1}^{\infty} \rho_{2-2 n} \frac{2^{-2 n-1} \sqrt{\pi} \Gamma(n+1)}{n \Gamma(n+3 / 2)}(-t)^{n}
$$

Comparison yields

$$
\rho_{2-2 k}=\frac{2^{2 k+3} \pi^{3 / 2} f_{\pi}^{2}}{N_{c} M_{V}^{2 k}} \frac{k \Gamma(k+3 / 2)}{\Gamma(k+1)}, k=1,2,3, \ldots
$$

In particular, the normalization condition, $\rho_{0}=1$, yields

$$
M_{V}^{2}=\frac{24 \pi^{2} f_{\pi}^{2}}{N_{c}}
$$

This relation is usually obtained when matching chiral quark models to VMD, yielding $M_{V}=826 \mathrm{MeV}$ with $f_{\pi}=93 \mathrm{MeV}$, and $M_{V}=764 \mathrm{MeV}$ with $f_{\pi}=86 \mathrm{MeV}$ (in the chiral limit).

The positive even moments are obtained by analytic continuation in the index n. They fulfill the spectral conditions of vanishing of the positive moments since $\Gamma(n)$ has single poles at non-positive integers, $n=0,-1,-2, \ldots$

$$
\rho_{2 n}=0, \quad n=1,2,3 \ldots
$$

For the even log-moments we have

$$
\rho_{2 n}^{\prime}=\left(-\frac{M_{V}^{2}}{4}\right)^{n} \frac{\Gamma(n) \Gamma\left(\frac{5}{2}-n\right)}{\Gamma\left(\frac{5}{2}\right)}, \quad n=1,2,3 \ldots
$$

The first few values are

$$
\rho_{2}^{\prime}=-\frac{4 f^{2} \pi^{2}}{N_{c}}, \quad \rho_{4}^{\prime}=\frac{2 f^{2} M_{V}^{2} \pi^{2}}{N_{c}}
$$

We may write the following interesting relation coming out from VMD and the spectral approach:

$$
B=-\frac{9 \pi^{2} f_{\pi}^{4}}{N_{c}}=-\frac{N_{c} M_{V}^{4}}{64 \pi^{2}}=-(202-217 \mathrm{MeV})^{4}
$$

which agrees within errors with the QCD SR estimate.

The inverse problem

The mathematical problem is now to invert the formula

$$
\rho_{2 n}=\int_{C} d \omega \omega^{2 n} \rho_{V}(\omega)
$$

The solution is given by the following surprisingly simple function

$$
\rho_{V}(\omega)=\frac{1}{2 \pi i} \frac{1}{\omega} \frac{1}{\left(1-4 \omega^{2} / M_{V}^{2}\right)^{5 / 2}}
$$

The function $\rho_{V}(\omega)$ has a single pole at the origin and branch cuts starting at \pm half the meson mass, $\omega= \pm M_{V} / 2$.

Scalar spectral function

$\rho=\rho_{V}+\rho_{S}$
For the case of the scalar spectral function (controling the odd moments) we proceed heuristically, by proposing

$$
\rho_{S}(\omega)=\frac{1}{2 \pi i} \frac{12 \rho_{3}^{\prime}}{M_{S}^{4}\left(1-4 \omega^{2} / M_{S}^{2}\right)^{5 / 2}}
$$

where the normalization is chosen in such a way that $\rho_{3}^{\prime}=-4 \pi^{2}\langle\bar{q} q\rangle / N_{c}$.
The analytic structure of $\rho_{S}(\omega)$ is similar to the case of $\rho_{V}(\omega)$, except for the absence of the pole at $\omega=0$.

The quark propagator

$$
\begin{aligned}
S(p) & =A(p) p+B(p)=Z(p) \frac{p+M(p)}{p^{2}-M^{2}(p)} \\
A\left(p^{2}\right) & \equiv \int_{C} d \omega \frac{\rho_{V}(\omega)}{p^{2}-\omega^{2}}=\frac{1}{p^{2}}\left[1-\frac{1}{\left(1-4 p^{2} / M_{V}^{2}\right)^{5 / 2}}\right]=-\frac{10}{M_{V}^{2}}-\frac{70 p^{2}}{M_{V}^{4}}+\ldots \\
B\left(p^{2}\right) & \equiv \int_{C} d \omega \frac{\omega \rho_{S}(\omega)}{p^{2}-\omega^{2}}=\frac{48 \pi^{2}\langle\bar{q} q\rangle}{M_{S}^{4} N_{c}\left(1-4 p^{2} / M_{S}^{2}\right)^{5 / 2}}
\end{aligned}
$$

No poles in the whole complex plane! Only branch cuts starting at $p^{2}=4 M_{V / S}^{2}$ (obvious, since poles would lead to cuts in the pion form factor)

The absence of poles is sometimes called "analytic confinement"

$M\left(Q^{2}\right)$ decreases as $1 / Q^{3}$ at large Euclidean momenta, which is favored by the recent lattice calculations. The χ^{2} fit results in the following optimum values,

$$
\begin{aligned}
& M_{0}=303 \pm 24 \mathrm{MeV} \\
& M_{S}=970 \pm 21 \mathrm{MeV}
\end{aligned}
$$

with the optimum value of χ^{2} per degree of freedom equal to 0.72 . The corresponding value of the quark condensate is

$$
\langle\bar{q} q\rangle=-\left(243.0_{-0.8}^{+0.1} \mathrm{MeV}\right)^{3}
$$

Other predictions

Pion light-cone wave function:

$$
\Psi\left(x, k_{\perp}\right)=\frac{3 M_{V}^{3}}{16 \pi\left(k_{\perp}^{2}+M_{V}^{2} / 4\right)^{5 / 2}} \theta(x) \theta(1-x)
$$

The average transverse momentum squared is equal to

$$
\left\langle k_{\perp}^{2}\right\rangle \equiv \int d^{2} k_{\perp} k_{\perp}^{2} \Psi\left(x, k_{\perp}\right)=\frac{M_{V}^{2}}{2}
$$

which numerically gives $\left\langle k_{\perp}^{2}\right\rangle=(544 \mathrm{MeV})^{2}$ (at $\left.Q_{0}\right)$.
Unintegrated PDF:

$$
q\left(x, k_{\perp}\right)=\bar{q}\left(1-x, k_{\perp}\right)=\frac{3 M_{V}^{3}}{16 \pi\left(k_{\perp}^{2}+M_{V}^{2} / 4\right)^{5 / 2}} \theta(x) \theta(1-x)
$$

Quark propagator in the coordinate representation:

$$
\begin{aligned}
& A(x)=\frac{48+24 M_{V} \sqrt{-x^{2}}-6 M_{V}^{2} x^{2}+M_{V}^{3}\left(-x^{2}\right)^{3 / 2}}{96 \pi^{2} x^{4}} \exp \left(-M_{V} \sqrt{-x^{2}} / 2\right) \\
& B(x)=\langle\bar{q} q\rangle /\left(4 N_{c}\right) \exp \left(-M_{S} \sqrt{-x^{2}} / 2\right)
\end{aligned}
$$

Final remarks

1. What has been done? Spectral representation, one loop. All seems to work in the pion sector: symmetries, anomalies, normalization guaranteed. Dynamics encoded in the spectral inverse and log moments
2. The method is very simple and predictive, having lots of applications
3. No $\log \left(Q^{2}\right)$ generated by the low-energy model (factorization property). This allows for calculations of matrix element for the high-energy processes (DAs, PDFs, pion transition form factor, ...)
4. Remark: need for $Q C D$ evolution of all quantities in order to pass from the quark model scale Q_{0} to a high-energy scale Q.
5. Interesting particular realization: VMD SQM
6. The form of the quark propagator: no poles, only cuts
7. More to come: photon and ρ-meson light-cone wave functions, sub-leading twist pion LCWFs

Backup slides

Coupling of electroweak currents

In QCD, the vector and axial currents are:

$$
J_{V}^{\mu, a}(x)=\bar{q}(x) \gamma^{\mu} \frac{\lambda_{a}}{2} q(x), \quad J_{A}^{\mu, a}(x)=\bar{q}(x) \gamma^{\mu} \gamma_{5} \frac{\lambda_{a}}{2} q(x)
$$

CVC and PCAC:

$$
\partial_{\mu} J_{V}^{\mu, a}(x)=0, \quad \partial_{\mu} J_{A}^{\mu, a}(x)=\bar{q}(x) \hat{M}_{0} i \gamma_{5} \frac{\lambda_{a}}{2} q(x)
$$

This implies Ward-Takahashi identities, based on

$$
\begin{aligned}
{\left[J_{V}^{0, a}(x), q\left(x^{\prime}\right)\right]_{x_{0}=x_{0}^{\prime}} } & =-\frac{\lambda_{a}}{2} q(x) \delta\left(\vec{x}-\vec{x}^{\prime}\right) \\
{\left[J_{A}^{0, a}(x), q\left(x^{\prime}\right)\right]_{x_{0}=x_{0}^{\prime}} } & =-\gamma_{5} \frac{\lambda_{a}}{2} q(x) \delta\left(\vec{x}-\vec{x}^{\prime}\right)
\end{aligned}
$$

A number of results are then obtained essentially for free: pions arise as Goldstone bosons with standard current-algebra properties, at high energies parton-model features, such as scaling or the spin- $1 / 2$ nature of hadronic constituents, are recovered

Vertices with one current

The vector and axial unamputated vertex functions are:

$$
\Lambda_{V, A}^{\mu, a}\left(p^{\prime}, p\right)=\int d^{4} x d^{4} x^{\prime}\langle 0| T\left\{J_{V, A}^{\mu, a}(0) q\left(x^{\prime}\right) \bar{q}(x)\right\}|0\rangle e^{i p^{\prime} \cdot x^{\prime}-i p \cdot x}
$$

WTIs:

$$
\begin{aligned}
& \left(p^{\prime}-p\right)_{\mu} \Lambda_{V}^{\mu, a}\left(p^{\prime}, p\right)=S\left(p^{\prime}\right) \frac{\lambda_{a}}{2}-\frac{\lambda_{a}}{2} S(p) \\
& \left(p^{\prime}-p\right)_{\mu} \Lambda_{A}^{\mu, a}\left(p^{\prime}, p\right)=S\left(p^{\prime}\right) \frac{\lambda_{a}}{2} \gamma_{5}+\gamma_{5} \frac{\lambda_{a}}{2} S(p)
\end{aligned}
$$

Solution

$$
\begin{aligned}
\Lambda_{V}^{\mu, a}\left(p^{\prime}, p\right) & =\int d \omega \rho(\omega) \frac{i}{p p^{\prime}-\omega} \gamma^{\mu} \frac{\lambda_{a}}{2} \frac{i}{p p-\omega} \\
\Lambda_{A}^{\mu, a}\left(p^{\prime}, p\right) & =\int d \omega \rho(\omega) \frac{i}{\not p^{\prime}-\omega}\left(\gamma^{\mu}-\frac{2 \omega q^{\mu}}{q^{2}}\right) \gamma_{5} \frac{\lambda_{a}}{2} \frac{i}{p p-\omega}
\end{aligned}
$$

Delburgo
\&
West:
gauge
technique

Pion-quark coupling

Near the pion pole $\left(q^{2}=0\right)$ we get

$$
\Lambda_{A}^{\mu, a}(p+q, p) \rightarrow-\frac{q^{\mu}}{q^{2}} \Lambda_{\pi}^{a}(p+q, p),
$$

where

$$
\Lambda_{\pi}^{a}(p+q, p)=\int d \omega \rho(\omega) \frac{i}{p+\not q-\omega} \frac{\omega}{f_{\pi}} \gamma_{5} \lambda_{a} \frac{i}{p p-\omega}
$$

We recognize in our formulation the Goldberger-Treiman relation for quarks:

$$
g_{\pi}(\omega)=\frac{\omega}{f_{\pi}}
$$

"Transverse ambiguity"

The above ansätze fulfill the WTI's. They are determined up to transverse pieces.

This ambiguity appears in all effective models. Current conservation fixes only the longitudinal pieces. Example:

$$
j_{\mu}=\bar{\psi}\left(f_{1} \gamma_{\mu}+i f_{2} \sigma_{\mu \nu} q^{\nu}\right) \psi
$$

The condition $q^{\mu} j_{\mu}=0$ does not constrain the f_{2}-term, since $\sigma_{\mu \nu} q^{\nu} q^{\mu}=0$ from antisymmetry.

QCD evolution of PDA

All results of the effective, low-energy model, refer to a soft energy scale, Q_{0}. In order to compare to experimental results, obtained at large scales, Q, the QCD evolution must be performed. Initial condition:

$$
\varphi\left(x ; Q_{0}\right)=\theta(x) \theta(1-x) .
$$

The evolved distribution amplitude reads

$$
\begin{aligned}
\varphi(x ; Q) & =6 x(1-x) \sum_{n=0}^{\infty} C_{n}^{3 / 2}(2 x-1) a_{n}(Q) \\
a_{n}(Q) & =\frac{2}{3} \frac{2 n+3}{(n+1)(n+2)}\left(\frac{\alpha\left(Q^{2}\right)}{\alpha\left(Q_{0}^{2}\right)}\right)^{\gamma_{n}^{(0)} /\left(2 \beta_{0}\right)}
\end{aligned}
$$

where $C_{n}^{3 / 2}$ are the Gegenbauer polynomials, $\gamma_{n}^{(0)}$ are appropriate anomalous dimensions, and $\beta_{0}=9$.

Results extracted from the experimental data of CLEO provide
$a_{2}(2.4 \mathrm{GeV})=0.12 \pm 0.03$, which we use to fix

$$
\alpha(Q=2.4 \mathrm{GeV}) / \alpha\left(Q_{0}\right)=0.15 \pm 0.06
$$

At LO this correspondsto $Q_{0}=322 \pm 45 \mathrm{MeV}$
Now we can predict

$$
\begin{aligned}
& a_{4}(2.4 \mathrm{GeV})=0.06 \pm 0.02(\exp :-0.14 \pm 0.03 \mp 0.09) \\
& a_{6}(2.4 \mathrm{GeV})=0.02 \pm 0.01
\end{aligned}
$$

Encouraging, with leading-twist and LO QCD evolution!

QCD evolution of PDF

The QCD evolution of the constant PDF has been treated in detail by Davidson \& ERA at LO and NLO. In particular, the non-singlet contribution to the energy-momentum tensor evolves as

$$
\frac{\int d x x q(x, Q)}{\int d x x q\left(x, Q_{0}\right)}=\left(\frac{\alpha(Q)}{\alpha\left(Q_{0}\right)}\right)^{\gamma_{1}^{(0)} /\left(2 \beta_{0}\right)}
$$

In has been found that at $Q^{2}=4 \mathrm{GeV}^{2}$ the valence quarks carry $47 \pm 0.02 \%$ of the total momentum fraction in the pion. Downward LO evolution yields that at the scale

$$
Q_{0}=313_{-10}^{+20} \mathrm{MeV}
$$

the quarks carry 100% of the momentum. The agreement of the evolved PDF with the SMRS data analysis is impressive

