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obtain the topography of the fireball
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47 vs. midrapidity

Up to now two basic categories of calculations:
@ (1) 4 studies at low energies (SIS, AGS),
Ni =V [ dBpfi(y/m?+p* T, i's,+'s)
@ (2) Studies at mid-rapidity for approximately boost-invariant
systems at highest energies (RHIC) at |y| < 1

@ Obvious fact from the boost symmetry (e.g. WB+Florkowski,
PRL 87 (2001) 272302)

dNi/dy  [dydN;/dy N;

dN;/dy — [dydN;/dy — N;

@ Inclusion of resonance decays simple in both above approaches
@ Cooper-Frye formula — spectra dN/(2mprdprdy) at
mid-rapidity
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Geometry and kinematics
Geometry and kinematics

The single freeze-out model

0
Boost non-invariant system

@ Particles with the same pseudorapidity 7 originate from
different regions

@ Thermal conditions and flow in these regions are different
"~ Wojciech Broniowski, Bartlomiej Biedron  Repidity-dependent ..
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Boost-noninvariant calculation

@ THERMINATOR [A. Kisiel, T. Tatu¢, WB, WF,
Comput.Phys.Commun. 174 (2006) 669-687] — Monte Carlo

@ Choice of the shape of the freeze-out hypersurface ¥ and
collective expansion

@ Dependence of thermal parameters on the position within X

@ Parameters are fitted independently to various combinations of
the data, reducing freedom

Result:
“topography” of the fireball, which forms the ground for other studiesJ
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Assumptions

o

Q
o
o

o

©

At a certain stage thermal equilibrium between hadrons occurs
(probably born that way)

The parameters: T, g, /15, and p,. In a boost-non-invariant
model these parameters depend on the position

The shape of the fireball is nontrivial in the longitudinal
direction

Hubble flow — longitudinal and transverse flow. Again, in the
boost-non-invariant model the form of the velocity field may
depend on the longitudinal position

The evolution after freeze-out includes decays of (all)
resonances which may proceed in cascades

Elastic rescattering after the chemical freeze-out is ignored
(approximation)
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Hypersurface and flow
(many possibilities!)
Tcoshay coshay

Tsinha | cos ¢
Tsinha | sin ¢
Tcosha J_Sil’lha”

xH =

N < X =

o - spatial rapidity, ay - transverse rapidity

t+z
Q=3 Iog +z p = /x?+ y? = rsinha |

The four-velocity follows the Hubble law

ut = xt/T.

The longitudinal flow v, = tanh o = z/t as in the Bjorken model,

the transverse flow (at z =0) is v, = tanh o) = p/+/1 + p?/72.
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Cooler or thinner?
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Yields drop with y — (1) decrease the transverse size with |y/|, or
(2) decrease T, or both. BRAHMS: (dN,/dy)/(dNk /dy) is, within
a few %, independent of y — T ~ const., and we must take (1)!
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Approximate constancy of T at BRAHMS
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Rl (Cleymans et al., 2006)
@ The universal freeze-out curve gives from g = 0 to 250 MeV
a slowly-varying value of T. We take T = 165 MeV.

@ At larger rapidity and/or lower collision energies, T does
depend on o and decreases towards the fragmentation region,
where T ~ 0 and ug ~ 1 GeV
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The farther, the thinner!

A new element in this work:

0<a; <o (q)) =al™(0)exp | —575

@ As we depart from the center by increasing |o |, we reduce
Q1 , Of pmax. The rate of this reduction is controlled by a new
model parameter, A. The farther, the thinner!

@ We admit the dependence of chemical potentials on the spatial
rapidity, necessary to describe the increasing density of baryon
number towards the fragmentation region:

pi(ay) = pi(0) [1 n A,-aﬁ-“]
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Summary Some predictions

Fitting strategy

(4

o

)

T = 9.74 fm, pmax(z = 0) = 7.74 fm (earlier fits)

The A parameter is fixed with the pion rapidity spectra
dN,.+ /dy, with the optimum value A = 3.33

For a given set of parameters we generate THERMINATOR events

First optimize pg(0) and Ag with the experimental p/p
rapidity dependence

Then fix us(0) and As using K /K~
Iterate two above items until a fixed point is reached

1;(0) and Ay, are consistent with zero and thus irrelevant

Result:
ug(0) =19 MeV, us(0) = 4.8 MeV, Ag = 0.65, As = 0.70
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Fit

Rapidity spectra
PT-spectra
Some predictions

The farther, the denser!
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Fit

Rapidity spectra
PT-spectra
Some predictions

(g at large rapidities

@ At ) = 3 we have ug around 200 MeV, more than 10 times
larger than at the origin — comparable to the highest-energy
SPS fit, where ug ~ 230 MeV
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pe(e)/ps(ey) is very close to a constant, ~ 4 — 3.5
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@ Results consistent with zero strangeness density

Us [MeV]
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solid — us from the fit to the data

dashed — from the condition of zero local strangeness density
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Fit

Rapidity spectra
PT-spectra
Some predictions

Ratios
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Fit

Rapidity spectra
PT-spectra

Some predictions
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The model Rapidity spectra
Results pT-spectra
Summary Some predictions
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Left: full feeding from the weak decays (black curves) and no
feeding (red curves) - experimental points are without feeding.
Potential problem with baryon stopping (poorly understood)
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Rapidity spectra
pT-spectra
Some predictions
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Rapidity spectra
PT-spectra
Some predictions
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Fit

Rapidity spectra
pT-spectra
Some predictions
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Fit

Rapidity spectra
PT-spectra
Some predictions

Hyperons
We have accomplished the goal of fixing the fireball topography!
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Summary

@ Although for y # 0 one should run the full simulation, the
naive extraction of ug and us from p/p and K+ /K~ works
surprisingly well at RHIC, % ~ exp(26ug), etc

@ ppand s grow with o, reaching at y ~ 3 values close to
those of the highest SPS energies (D. Roehrich at Florence,
M. Murray, J. Cleymans here), or: chemical potentials follow
the universal freeze-out curve in the fireball

@ At mid-rapidity the values of i’s are somewhat lower than
derived from the previous thermal fits to the data averaging
over |y| <1, with our values taking ug(0) = 19 MeV and
us(0) =5 MeV

@ The local strangeness density in the fireball is compatible with
zero at all values of

@ up/us varies very weakly with rapidity, ranging from ~ 4 at
midrapidity to ~ 3.5 at larger rapidities
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Summary 2

@ The d2N/(27p, dp, dy) spectra of pions and kaons are well
reproduced

@ The rapidity shape of the spectra of p and p is described
properly, while the model overpredicts the yields by about 50%.
This suggests perhaps a lower value of T at increased rapidity,
presence of the Rafelski v factors, or non-thermal mechanisms
behing the baryon stopping (data have systematic uncertainty)

@ Increasing yield of the net protons with rapidity is obtained
naturally, explaining the shape of the rapidity dependence on
purely statistical grounds

@ Study of NA49 data under way

@ Many ways of modelling boost-noninvariant systems: cooler,
thinner, more dilute, HBT data will be useful
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