Rapidity-dependent chemical potentials in statistical approach*

Wojciech Broniowski¹ and Bartłomiej Biedroń²

¹Świętokrzyska Academy, Kielce, and Institute of Nuclear Physics PAN, Cracow ²M.Sc. student, AGH University of Science and Technology, Cracow, Poland

Levoča, Slovakia

Outline

Goal:

obtain the topography of the fireball

- Experimental facts
- 2 The model
 - Geometry and kinematics
 - The single freeze-out model
- Results
 - Fit
 - Rapidity spectra
 - p_T-spectra
 - Some predictions

Typical data

This talk: all data from BRAHMS (M. Murray, P. Staszel this morning)

4π vs. midrapidity

Up to now two basic categories of calculations:

- (1) 4π studies at low energies (SIS, AGS), $N_i = V \int d^3p \, f_i(\sqrt{m_i^2 + p^2}; T, \mu's, \gamma's)$
- (2) Studies at mid-rapidity for approximately boost-invariant systems at highest energies (RHIC) at |y| < 1
- Obvious fact from the boost symmetry (e.g. WB+Florkowski, PRL 87 (2001) 272302)

$$\frac{dN_i/dy}{dN_j/dy} = \frac{\int dy \ dN_i/dy}{\int dy \ dN_j/dy} = \frac{N_i}{N_j}.$$

- Inclusion of resonance decays simple in both above approaches
- Cooper-Frye formula \rightarrow spectra $dN/(2\pi p_T dp_T dy)$ at mid-rapidity

Geometry and kinematics

- Boost non-invariant system
- ullet Particles with the same pseudorapidity η originate from different regions
- Thermal conditions and flow in these regions are different

Boost-noninvariant calculation

- THERMINATOR [A. Kisiel, T. Tałuć, WB, WF, Comput.Phys.Commun. 174 (2006) 669-687] → Monte Carlo
- ullet Choice of the shape of the freeze-out hypersurface Σ and collective expansion
- ullet Dependence of thermal parameters on the position within Σ
- Parameters are fitted independently to various combinations of the data, reducing freedom

Result:

"topography" of the fireball, which forms the ground for other studies

Assumptions

- At a certain stage thermal equilibrium between hadrons occurs (probably born that way)
- ② The parameters: T, μ_B , μ_S , and μ_{I_3} . In a boost-non-invariant model these parameters depend on the position
- The shape of the fireball is nontrivial in the longitudinal direction
- Hubble flow → longitudinal and transverse flow. Again, in the boost-non-invariant model the form of the velocity field may depend on the longitudinal position
- The evolution after freeze-out includes decays of (all) resonances which may proceed in cascades
- Elastic rescattering after the chemical freeze-out is ignored (approximation)

Hypersurface and flow

$$(\text{many possibilities!}) \\ x^{\mu} = \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \tau \cosh \alpha_{\perp} \cosh \alpha_{\parallel} \\ \tau \sinh \alpha_{\perp} \cos \phi \\ \tau \sinh \alpha_{\perp} \sin \phi \\ \tau \cosh \alpha_{\perp} \sinh \alpha_{\parallel} \end{pmatrix}.$$

 $lpha_{\parallel}$ - spatial rapidity, $lpha_{\perp}$ - transverse rapidity

$$\alpha_{\parallel} = \frac{1}{2} \log \frac{t+z}{t-z}, \quad \rho = \sqrt{x^2 + y^2} = \tau \sinh \alpha_{\perp}$$

The four-velocity follows the Hubble law

$$u^{\mu}=x^{\mu}/ au$$
.

The longitudinal flow $v_z=\tanh\alpha_{\parallel}=z/t$ as in the Bjorken model, the transverse flow (at z=0) is $v_{\rho}=\tanh\alpha_{\perp}=\rho/\sqrt{1+\rho^2/\tau^2}$.

Cooler or thinner?

Yields drop with $y \to (1)$ decrease the transverse size with |y|, or (2) decrease T, or both. BRAHMS: $(dN_{\pi}/dy)/(dN_{K}/dy)$ is, within a few %, independent of $y \to T \sim \text{const.}$, and we must take (1)!

Approximate constancy of T at BRAHMS

- The universal freeze-out curve gives from $\mu_B=0$ to 250 MeV a slowly-varying value of T. We take T=165 MeV.
- At larger rapidity and/or lower collision energies, T does depend on α_{\parallel} and decreases towards the fragmentation region, where $T\sim 0$ and $\mu_{B}\sim 1$ GeV

The farther, the thinner!

A new element in this work:

$$0 \leq lpha_{\perp} \leq lpha_{\perp}^{
m max}(lpha_{\parallel}) = lpha_{\perp}^{
m max}(0) \exp\left(-rac{lpha_{\parallel}^2}{2\Delta^2}
ight).$$

- As we depart from the center by increasing $|\alpha_{\parallel}|$, we reduce α_{\perp} , or $\rho_{\rm max}$. The rate of this reduction is controlled by a new model parameter, Δ . The farther, the thinner!
- We admit the dependence of chemical potentials on the spatial rapidity, necessary to describe the increasing density of baryon number towards the fragmentation region:

$$\mu_i(\alpha_{\parallel}) = \mu_i(0) \left[1 + A_i \alpha_{\parallel}^{2.4} \right]$$

Fitting strategy

- \bullet au=9.74 fm, $ho_{
 m max}(z=0)=7.74$ fm (earlier fits)
- The Δ parameter is fixed with the pion rapidity spectra dN_{π^\pm}/dy , with the optimum value $\Delta=3.33$
- For a given set of parameters we generate THERMINATOR events
- First optimize $\mu_B(0)$ and A_B with the experimental p/\bar{p} rapidity dependence
- Then fix $\mu_S(0)$ and A_S using K^+/K^-
- Iterate two above items until a fixed point is reached
- $\mu_{I_3}(0)$ and A_{I_3} are consistent with zero and thus irrelevant

Result:

$$\mu_B(0) = 19 \text{ MeV}, \ \mu_S(0) = 4.8 \text{ MeV}, \ A_B = 0.65, \ A_S = 0.70$$

The farther, the denser!

Lines - parameterization:
$$\mu_i(lpha_\parallel) = \mu_i(0) \left[1 + A_i lpha_\parallel^{2.4}
ight]$$

Points - approximate result: $\frac{p}{\bar{p}} \simeq \exp(2\beta\mu_B), \ \frac{K^+}{K^-} \simeq \exp(2\beta\mu_S)$

μ_B at large rapidities

• At $\alpha_{\parallel}=3$ we have μ_B around 200 MeV, more than 10 times larger than at the origin – comparable to the highest-energy SPS fit, where $\mu_B\simeq 230~{\rm MeV}$

μ_B/μ_S

 $\bullet~\mu_{B}(\alpha_{\parallel})/\mu_{S}(\alpha_{\parallel})$ is very close to a constant, \simeq 4 - 3.5

Zero strangeness density

Results consistent with zero strangeness density

solid – μ_{S} from the fit to the data dashed – from the condition of zero local strangeness density

Ratios

triangles – BRAHMS data dots – model with fitted dependence of $\mu's$ on α_{\perp}

π and K

 π^+ with full feeding from the weak decays (upper curve) and without the feeding (lower curve), kaons with full feeding, the data for pions corrected for the weak decays

p and \bar{p}

Left: full feeding from the weak decays (black curves) and no feeding (red curves) - experimental points are without feeding. Potential problem with baryon stopping (poorly understood)

 \bar{p} @ 200 GeV compiled by Anna Baran, Ph.D. thesis, 2004

Experimental facts Fit The model Rapidity spectra Results p_T-spectra Summary Some predictions $dp^{L}dp^{2}d\mu^{2} 10^{2}$ 10^{-1} 10^{-2}

 10^{-4}

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Experimental facts Fit The model Rapidity spectra Results p_-spectra
Some predictions Summary $dN/(2 \pi p_T dp_T)$ 10^{2} 10 10^{-1} 10^{-2} 10^{-4} 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Experimental facts
The model
Results
Summary

Fit
Rapidity spectra

p_-spectra
Some predictions

Experimental facts The model Results Summary

Fit Rapidity spectra p_T-spectra Some predictions

Hyperons

We have accomplished the goal of fixing the fireball topography!

Small splitting of Ω and $\bar{\Omega}$

Summary

- Although for $y \neq 0$ one should run the full simulation, the naive extraction of μ_B and μ_S from p/\bar{p} and K^+/K^- works surprisingly well at RHIC, $\frac{p}{\bar{p}} \simeq \exp(2\beta\mu_B)$, etc
- μ_B and μ_S grow with α_{\parallel} , reaching at $y\sim 3$ values close to those of the highest SPS energies (D. Roehrich at Florence, M. Murray, J. Cleymans here), or: chemical potentials follow the universal freeze-out curve in the fireball
- At mid-rapidity the values of $\mu's$ are somewhat lower than derived from the previous thermal fits to the data averaging over $|y| \leq 1$, with our values taking $\mu_B(0) = 19 \text{ MeV}$ and $\mu_S(0) = 5 \text{ MeV}$
- \bullet The local strangeness density in the fireball is compatible with zero at all values of $\alpha_{\rm II}$
- μ_B/μ_S varies very weakly with rapidity, ranging from \sim 4 at midrapidity to \sim 3.5 at larger rapidities

Summary 2

- The $d^2N/(2\pi p_{\perp}dp_{\perp}dy)$ spectra of pions and kaons are well reproduced
- The rapidity shape of the spectra of p and \bar{p} is described properly, while the model overpredicts the yields by about 50%. This suggests perhaps a lower value of T at increased rapidity, presence of the Rafelski γ factors, or non-thermal mechanisms behing the baryon stopping (data have systematic uncertainty)
- Increasing yield of the net protons with rapidity is obtained naturally, explaining the shape of the rapidity dependence on purely statistical grounds
- Study of NA49 data under way
- Many ways of modelling boost-noninvariant systems: cooler, thinner, more dilute, HBT data will be useful

