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Introduction

Elliptic flow [movie], measure:

v2 =
〈p2

x〉 − 〈p2
y〉

〈p2
x〉 + 〈p2

y〉
Initial shape asymmetry:

ε =
〈y2〉 − 〈x2〉
〈x2〉 + 〈y2〉

Hydro:
v2 ∼ ε

(linearity of perturbation)
Event-by-event fluctuations of v2 measured (PHOBOS, STAR)

Δv2/v2

[exp. results]
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Outline

Goals/results:

analysis of shape fluctuations in variants of Glauber models

understand the statistics (e.g., Δε∗/ε∗(b = 0) =
√

4
π − 1 � 0.52)

Δv∗2/v∗2 � 0.5 for central and peripheral collisions
(∗ =“participant”, see later)

1 Introduction
2 Fluctuations of the initial condition

Collision
Understanding the statistics
Monte Carlo simulations in Glauber models

3 v2, hydro, higher harmonics, etc.
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A typical gold-gold event
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all nucleons wounded nucleons binary collisions

Sizeable fluctuations of the center of mass and the quadrupole axes

Aguiar+Kodama+Osada+Hama 2001, Miller+Snellings 2003,
Bhalerao+Blaizot+Borghini+Ollitrault 2005,
Andrade+Grassi+Hama+Kodama+Socolowski 2006, Voloshin 2006, ...
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Notation

fixed-axes = standard
f(ρ, φ) = f0(ρ) + 2f2(ρ) cos(2φ) + 2f4(ρ) cos(4φ) + . . .

ε =
∫
ρ dρρ2f2(ρ)∫
ρ dρρ2f0(ρ)

variable-axes = participant=∗ – more elongated!

f∗(ρ, φ) = f0(ρ)+2f∗2 (ρ) cos(2φ)+2f∗4 (ρ) cos(4φ)+. . .

ε∗ =
∫
ρ dρρ2f∗2 (ρ)∫
ρ dρρ2f0(ρ)

(coordinates shifted to center-of-mass and rotated)

RHIC measures the v∗2 , as it cannot determine accurately the
reaction plane!
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One-dimensional toy model

just 2 ρ-independent terms:

f(φ) = 1 + 2ε cos(2φ)
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One-dimensional toy model

just 2 ρ-independent terms:

f(φ) = 1 + 2ε cos(2φ)

fixed axes (standard)

ε = 〈〈 1
n

∑n
k=1 cos(2φk)〉〉 = ε
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One-dimensional toy model

just 2 ρ-independent terms:

f(φ) = 1 + 2ε cos(2φ)

fixed axes (standard)

ε = 〈〈 1
n

∑n
k=1 cos(2φk)〉〉 = ε

variable axes (participant)

ε∗ = 〈〈 1
n

∑n
k=1 cos[2(φk − φ∗)]〉〉

Y =
1
n

n∑
k=1

cos(2φk), X =
1
n

n∑
k=1

sin(2φk)

φ∗ : quantity 1
n

∑n
k=1 cos[2(φk − φ∗)] maximized in each event

⇒ cos(2φ∗) = Y/
√
Y 2 +X2, sin(2φ∗) = X/

√
Y 2 +X2

ε∗ = 〈〈
√√√√( 1

n

n∑
k=1

cos(2φk)

)2

+

(
1
n

n∑
k=1

sin(2φk)

)2

〉〉
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Central limit theorem

For large n the distribution of Y and X is Gaussian:

f(Y,X) =
n

π
√

1 − 2ε2
exp

[
−n
(

(Y − ε)2

1 − 2ε2
+X2

)]

Let Y = q cosα, X = q sinα.
We need the integral of f(Y,X) = f(q, α) over α:

∫ 2π

0
dαf(q, α) =

2n√
π
√

1 − 2ε2
exp

[
−n
(
q2 + ε2

1 − 2ε2

)]

×
∞∑

j=0

(2qε)j
Γ(j + 1

2)
j!

Ij

(
2nεq

1 − 2ε2

)
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ε∗ in the toy model

ε∗ =
∫
q dq dα qf(q, α) =

1 − 2ε2√
nπ

∞∑
j=0

(
2ε2
)j Γ(j + 1

2 )Γ(j + 3
2)

j!2 1F1

(
−1

2
, j + 1;− nε2

1 − 2ε2

)
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ε∗ in the toy model

ε∗ =
∫
q dq dα qf(q, α) =

1 − 2ε2√
nπ

∞∑
j=0

(
2ε2
)j Γ(j + 1

2 )Γ(j + 3
2)

j!2 1F1

(
−1

2
, j + 1;− nε2

1 − 2ε2

)

〈ε∗2〉 = 〈〈Y 2 +X2〉〉 =
∫
q dq dα q2f(q, α) =

1 + (n − 1)ε2

n
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ε∗ in the toy model

ε∗ =
∫
q dq dα qf(q, α) =

1 − 2ε2√
nπ

∞∑
j=0

(
2ε2
)j Γ(j + 1

2 )Γ(j + 3
2)

j!2 1F1

(
−1

2
, j + 1;− nε2

1 − 2ε2

)

〈ε∗2〉 = 〈〈Y 2 +X2〉〉 =
∫
q dq dα q2f(q, α) =

1 + (n − 1)ε2

n

“centrality”=0

ε∗(ε = 0) =
√
π

2
√
n
,

Δε∗

ε∗
=

√
4
π
− 1 � 0.52
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ε∗ as a function of ε (toy model)
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ε∗ in the general two-dimensional case

(under the assumption of no correlations of locations of sources)

ε∗ =
√

2σ2
Y

Ik,0
√
πσX

∞∑
j=0

(2δσ2
Y )j

Γ
(
j + 1

2

)
Γ
(
j + 3

2

)
1F1

(
−1

2 ; j + 1;− Ȳ 2

2σ2
Y

)
j!2

Ȳ = I2,2, σ
2
Y =

1
2n

(I4,0 − 2I2
2,2 + I4,4), σ2

X =
1
2n

(I4,0 − I4,4),

δ =
1

2σ2
Y

− 1
2σ2

X

, Ik,l =
∫
ρdρfl(ρ)ρk/

∫
ρdρf0(ρ)

at b = 0 very simple results (independent of A, energy, model, ...)

ε∗ =

√
πI4,0

2I2,0
√
n
,

Δε∗

ε∗
=

√
4
π
− 1, f∗2 (ρ) =

1
2

√
π

nI2k,0
ρkf0(ρ)
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Glauber-like models tested

wounded nucleons, σw = 42 mb, d = 0.4 fm

one goal:
compare various Glauber-like models
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Glauber-like models tested

wounded nucleons, σw = 42 mb, d = 0.4 fm
mixed model: 85.5% wounded + 14.5% binary,
σw = σbin = 42 mb

one goal:
compare various Glauber-like models
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Glauber-like models tested

wounded nucleons, σw = 42 mb, d = 0.4 fm
mixed model: 85.5% wounded + 14.5% binary,
σw = σbin = 42 mb
hot spots: σw = 42 mb, σbin = 0.5 mb. When a rare binary
collision occurs it produces on the average a large amount of
the transverse energy = 14.5% × σw/σbin

one goal:
compare various Glauber-like models
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Glauber-like models tested

wounded nucleons, σw = 42 mb, d = 0.4 fm
mixed model: 85.5% wounded + 14.5% binary,
σw = σbin = 42 mb
hot spots: σw = 42 mb, σbin = 0.5 mb. When a rare binary
collision occurs it produces on the average a large amount of
the transverse energy = 14.5% × σw/σbin

hot spots + Γ: Sources may deposit the transverse energy with
a certain probability distribution. We superimpose the Γ
distribution with κ = 0.5 over the distribution of sources,

g(w, κ) = wκ−1κκ exp(−κw)/Γ(κ),

where w̄ = 1 and var(w) = 1/κ

one goal:
compare various Glauber-like models
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Fixed-axes (standard) profiles

 [fm]     ρ
2 4 6 8

) 
   

 
ρ( if

0

2

4

6    wounded
   mixed
   hot-spot

Γ   hot-spot + 

b = 0 fm

 [fm]     ρ
2 4 6 8

) 
   

 
ρ( if

0

2

4

6    wounded
   mixed
   hot-spot

Γ   hot-spot + 

b = 8 fm

left: f0(ρ) right: f0(ρ), f2(ρ), f4(ρ)

hot-spot + Γ sharpest
keeping harmonics up to l = 4 is sufficient
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Variable-axes (participant) profiles
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Comparison to CGC

[Drescher+Nara, arXiv:0707.0249]
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Event-by-event fluctuations of v2

At low azimuthal asymmetry one expects on hydrodynamical grounds

Δv∗2
v∗2

=
Δε∗

ε∗
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Event-by-event fluctuations of v2

At low azimuthal asymmetry one expects on hydrodynamical grounds

Δv∗2
v∗2

=
Δε∗

ε∗

Δv∗2
v∗2

(b = 0) � Δε∗

ε∗
(b = 0) �

√
4
π
− 1 � 0.52

For peripheral collisions (collection of a few p− p collisions) also

Δv∗2
v∗2

(b ∼ 2R) �
√

4
π
− 1 � 0.52

(replace coordinates by momenta and repeat the above analysis)

At intermediate b lower values
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hydro: Δε∗/ε∗ � Δv∗2/v∗2(Au+Au, central)� 0.5
coordinates → pT : Δv∗2/v∗2(several p+p)� 0.5 =
Δv∗2/v∗2(Au+Au, periph.)� 0.5
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Perturbation theory in azimuthal asymmetry

Schematically, hydro equations are L(ψ) = 0, where L - operator
for hydrodynamics, ψ - set of hydrodynamical functions of
space-time describing the state. For smooth evolution and small
asymmetry one may expand around the azimuthally-symmetric
solution ψ0:

L(ψ) = L(ψ0 + δψ) � L(ψ0) + L′(ψ0)δψ

Since L(ψ0) = 0, we have to first order

L′(ψ0)δψ = 0

Linearity ⇒ ||δψ(t)|| ∼ ||δψ(t0)|| for all hydrodynamic properties,
in particular the shape and flow
Linearity:

v∗2(t) ∼ ε∗(t0)

Wojciech Broniowski Fluctuations of v2
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Perturbation to second order

Strong suppression of subsequent harmonics suggests the hierarchy

ψ = ψ0 + λδψ2 + λ2δψ4 + . . . ,

Expansion to second order in λ ∼ a few % yields

L(ψ) = L(ψ0) + λL′(ψ0)δψ2 + λ2
[
L′(ψ0)δψ4 + L′′(ψ0)(δψ2)2/2

]
The linear inhomogeneous equation for the l = 4 deformation:

L′(ψ0)δψ4 = −1
2
L′′(ψ0)(δψ2)2

Let τ2 and τ4 denote the characteristic times for the
operators L′(ψ0) and L′′(ψ0), respectively. If τ2 
 τ4 then for t
 t0

||ψ4(t)|| ∼ ||δψ2(t)||2 ∼ ||δψ2(t0)||2
Wojciech Broniowski Fluctuations of v2
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Octupole flow:

v∗4(t) ∼ ε∗2 ∼ v∗22 (t)

Simulations [Kolb 2003, Borghini+Ollitrault 2005]: v2 saturates
with time, v4 quickly assumes the value proportional to v2

2

Data of [Bai 2007] comply to the result, except at very low pT
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Octupole flow:

v∗4(t) ∼ ε∗2 ∼ v∗22 (t)

Simulations [Kolb 2003, Borghini+Ollitrault 2005]: v2 saturates
with time, v4 quickly assumes the value proportional to v2

2

Data of [Bai 2007] comply to the result, except at very low pT

Fluctuations of v4:

Δv∗4
v∗4

= 2
Δv∗2
v∗2

= 2
Δε∗

ε∗
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Octupole flow:

v∗4(t) ∼ ε∗2 ∼ v∗22 (t)

Simulations [Kolb 2003, Borghini+Ollitrault 2005]: v2 saturates
with time, v4 quickly assumes the value proportional to v2

2

Data of [Bai 2007] comply to the result, except at very low pT

Fluctuations of v4:

Δv∗4
v∗4

= 2
Δv∗2
v∗2

= 2
Δε∗

ε∗

At large t all deformations determined by ε∗ ⇒ other relations.
Let RHBT(φ) = R0 + 2R2 cos(2φ) + 2R4 cos(4φ) + . . . . Then

R4 ∼ R2
2
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Amnesia:
In hydro (under mentioned conditions) memory of the higher harmon-
ics is lost quickly. Only the initial quadrupole (l = 2) deformation
matters for observables sensitive to late times

Wojciech Broniowski Fluctuations of v2



Introduction
Fluctuations of the initial condition

v2, hydro, higher harmonics, etc.
Summary

Summary 1
Summary 2

Summary

ε, ε∗, and Δε/ε are sensitive to the choice of the
(Glauber-like) model, while Δε∗/ε∗ is not, changing at most
by 10-15%. Resolving better the reaction plane would help to
distinguish the models of the initial stage.
Analytic formulas explain why at b = 0 we have (in absence of
correlations) Δε∗/ε∗ � 0.5, insensitive of the model used or
the mass number of the colliding nuclei.
(not discussed) For jet emission asymmetry, we find that the
effect of the increased eccentricity is largely canceled by the
shift of the center of mass and the rotation of the axes of the
absorbing medium. Only at low b some effect is left.
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Summary 2

Smoothing prescription for e-by-e hydro can be based on the
variable-axes profiles fl(ρ)
Analysis of the variable-axes moments in the coordinate space
directly carries over to the collective flow and analysis of v∗2 in
the momentum space. In particular, for central and peripheral
collisions Δv∗2/v∗2 � 0.5 (statistics), lower in between
Under assumptions of smootheness, perturbation theory made
on top of azimuthally symmetric hydro leads to sensitivity of
higher-harmonic late-time measures, v4, etc., to the initial
quadrupole deformation ε(t0) only. Higher harmonics of the
initial shape deformation are irrelevant, as they presumably are
damped fast. A number of relations follows for various
measures and their e-by-e fluctuations
Challenge to measure, e.g., Δv∗4/v∗4 = 2Δv∗2/v∗2
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