
Nowe okno na strukturę lekkich jąder: klastry α a ultrarelatywistyczne zderzenia jądrowe

Wojciech Broniowski

IFJ PAN

24 IV 2014

[szczegóły w WB& E. Ruiz Arriola, arXiv:1312.0289, PRL 112, 112501]

WB (IFJ PAN) α clusters IFJ PAN 2014 1 / 46

Instead of outline

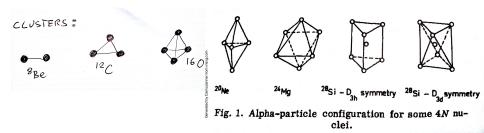
Two phenomena are related:

 α clustering in light nuclei

harmonic flow in ultra-relativistic A+B collisions

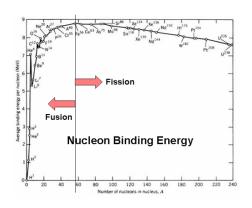
Surprising link:

low-energy structure \longleftrightarrow highest energy reactions


WB (IFJ PAN) lpha clusters IFJ PAN 2014 2 / 46

α clusters

WB (IFJ PAN) lpha clusters IFJ PAN 2014 3 / 46


Some history

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O ... were composed of α -particles

Generated by CamScanner from intsig.com

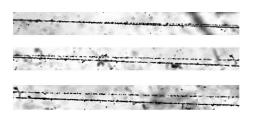
Binding

 α very tightly bound

Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that comprise equal numbers of protons and neutrons, (e.g., 12 C and 16 O) were identified that could not be described by the shell model, and it was suggested by Ikeda and others that these states could be associated with configurations composed of α particles


Also: problems with α decay of 212 Po shell model predicts a way too small decay width spectroscopy: 212 Po = 208 Pb+ α [Astier et al. 2014]

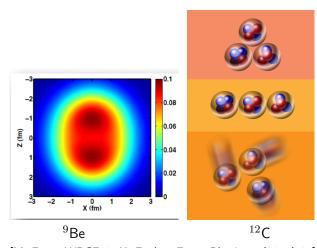
WB (IFJ PAN) lpha clusters IFJ PAN 2014 6 / 46

Fragmentation

Evidence from dissociation in nuclear track emulsions

[Zarubin 2013 (BECQUEREL)]

Example: dissociation of ⁷Be (energy of a few A GeV)


N 30 11 13 10 9 8	1	1		
		1		9
% 31 12 14 11 10 9	1	1	2	10

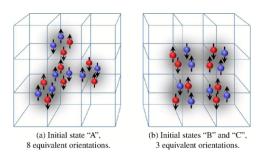
Numerous ongoing experiments (GANIL, Osaka, ...)

Was the cluster there or is it created at break-up?

These studies cannot reveal the geometry (cluster arrangement)

Present theory status

ground


Hoyle 0^+

other excited, 2^+ ...

[M. Freer: WPCF13, H. Fynbo+Freer: Physics 4 (2011) 94]

WB (IFJ PAN) α clusters IFJ PAN 2014 8 / 46

Ab initio calculations of ^{16}O with chiral NN force (Juelich 2014) \rightarrow strong α clusterization

ground state

excited

WB (IFJ PAN) lpha clusters IFJ PAN 2014 9 / 46

Computational techniques

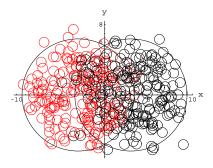
(massive effort)

Funaki et al.: certain states in self-conjugated nuclei ... can be described as product states of α particles, all in the lowest 0S state. We define a state of condensed α particles in nuclei as a bosonic product state in good approximation, in which all bosons occupy the lowest quantum state of the corresponding bosonic mean-field potential (α BEC)

Another approach: Fermionic Molecular Dynamics (FMD)

Quantum Variational Monte Carlo (with 2- and 3-body forces) for A=2-12 [R. Wiringa et al., http://www.phy.anl.gov/theory/research/density/]

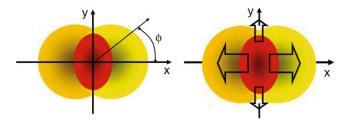
All approaches to light nuclei give clusters


Goal (not yet accurately reached):

reproduce ground-state energy, excitation spectrum, EM form factor, ...

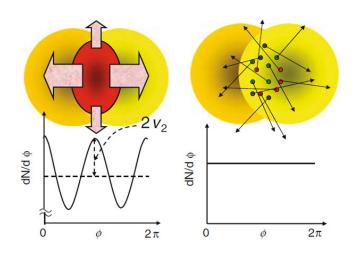
Flow

WB (IFJ PAN) α clusters IFJ PAN 2014 11 / 46

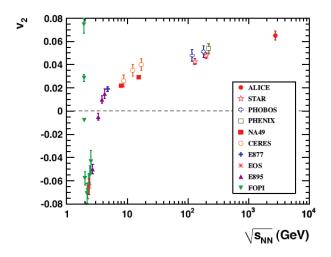

A+A collisions

Au+Au collision at RHIC

WB (IFJ PAN) α clusters IFJ PAN 2014 12 / 46

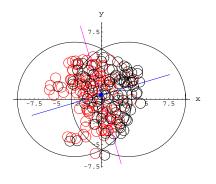

Idea of flow

"Initial shape – final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles


- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ 🧸 를 - 🔊 Q @

Elliptic flow

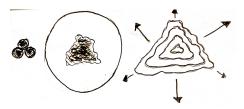
[ALICE]


Major observation in HIC – signature of QGP

[ALICE]

Harmonic flow

Participants:


- initial fireball is asymmetric in the transverse plane from 1) geometry 2) fluctuations
- collectivity! flow generated
- strong elliptic flow, triangular flow from fluctuations, higher-order flow

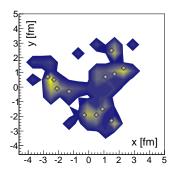
Merge the two ideas (α 's and flow) \rightarrow

WB (IFJ PAN) α clusters IFJ PAN 2014 17 / 46

From α clusters to flow in relativistic collisions

 $\begin{array}{c} \alpha \text{ clusters} \to \text{asymmetry of shape} \to \text{asymmetry of initial fireball} \to \\ & \to \text{ hydro or transport} \to \text{collective harmonic flow} \end{array}$

nuclear triangular geometry o fireball triangular geometry o triangular flow

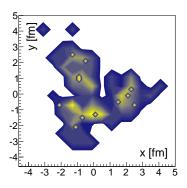

What are the signatures, chances of detection?

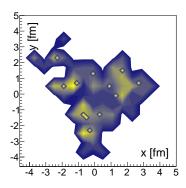
Related idea: triton/³He–Au at RHIC in 2015 [Sickles (PHENIX) 2013] The case of light nuclei is more promising, as it leads to abundant fireballs

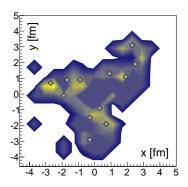
$^{12}\text{C-}^{208}\text{Pb}$ – single event

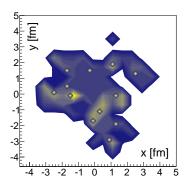
why ultrarelativistic?

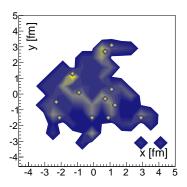
reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

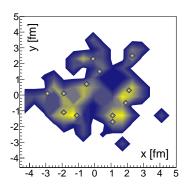


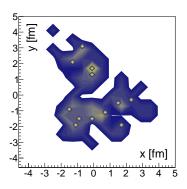

 $(N_w > 70$ - flat-on orientation)

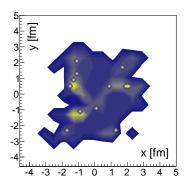

Imprints of the three α clusters clearly visible


[simulations with GLISSANDO 2]





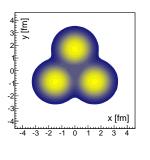


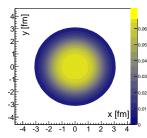


The meaning of intrinsic

Ground state of ^{12}C is a 0^+ state (rotationally symmetric wave function). The meaning of *deformation* concerns multiparticle correlations between the nucleons

Superposition over orientations:

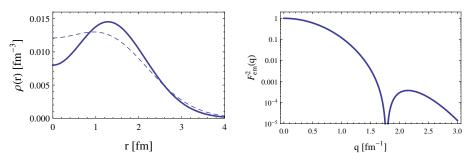

$$|\Psi_{0+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi} \int d\Omega \Psi_{\rm intr}(x_1,\ldots,x_N;\Omega)$$


The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_n^{\rm intr}(\vec x) = \langle f(R(-\Phi_n)\vec x) \rangle$. Brackets indicate averaging over events and $R(-\Phi_n)$ is the inverse rotation by the principal-axis angle in each event

WB (IFJ PAN) α clusters IFJ PAN 2014 28 / 46

Back to ¹²C – intrinsic density

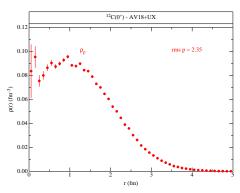
Intrinsic distributions in $^{12}\mathrm{C}$: three α 's in a triangular arrangement



clustered

unclustered

Constraints on ^{12}C from EM form factor

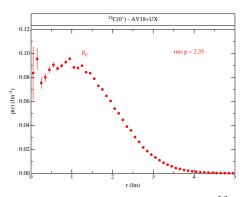

Electric charge density (dashed line) and the corresponding distribution of the centers of protons (solid line) in ^{12}C for the data plotted against the radius, for the BEC calculation – agrees with the experimental data for the charge form factor

Central depletion naturally explained with the hole between the clusters

4 D > 4 B > 4 E > 4 E > 9 4 (%)

IFJ PAN 2014

$^{12}\mathsf{C}$ from Wiringa's MC



Distribution of the centers of protons = neutrons in 12 C

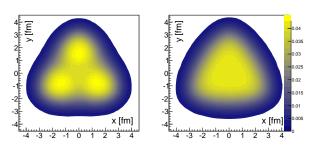
smaller central depletion

WB (IFJ PAN) α clustersIFJ PAN 201431 / 46

¹²C from Wiringa's MC

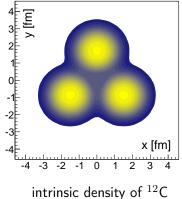
Distribution of the centers of protons = neutrons in 12 C

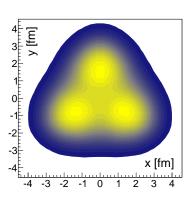
smaller central depletion


GLISSANDO implements these clustered distributions

 $\rightarrow \text{ carry out detailed simulations}$

$^{12}\text{C}-^{208}\text{Pb}$ collision


Intrinsic distributions in the transverse plane of the fireball (here with $N_w > 70$ – large multiplicity enforcing the flat-on collision)


clustered

unclustered

Geometry of nucleus \rightarrow geometry of fireball

intrinsic density of ¹²C

geometry of the fireball

WB (IFJ PAN) α clusters **IFJ PAN 2014** 33 / 46

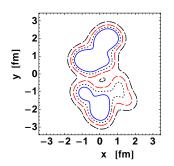
Eccentricity parameters

Eccentricity parameters ϵ_n (Fourier analysis)

$$\epsilon_n e^{in\Phi_n} = \frac{\sum_j \rho_j^n e^{in\phi_j}}{\sum_j \rho_j^n}$$

describe the shape of each event (j labels the sources in the event, n=rank, Φ_n is the principal axis angle)

Two components:

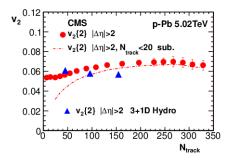

- internal (from existent mean deformation of the fireball)
- from fluctuations

→□▶ →□▶ → □▶ → □ ● → ○○○

Digression: d-A by Bożek

The deuteron has an intrinsic dumbbell shape with very large deformation: rms $\simeq 2~{\rm fm}$

Initial entropy density in a d-Pb collision with $N_{\mathrm{part}}=24$ [Bożek 2012]



Resulting large elliptic flow confirmed with the later RHIC analysis

Digression 2: collectivity in small systems

Active research:

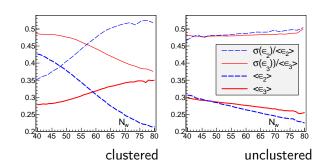
hydro in p-A, d-A collisions, pioneered by Bożek

[Bożek+WB+Torrieri PRL 111 (2013) 172303]

Geometry vs multiplicity correlations in ¹²C-Pb

Specific feature of the $^{12}\mathrm{C}$ collisions:

The cluster plane parallel or perpendicular to the transverse plane:


higher multiplicity higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

WB (IFJ PAN) lpha clusters IFJ PAN 2014 37 / 46

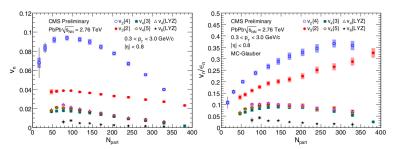
Ellipticity and triangularity vs multiplicity

Clusters:

When $N_w \nearrow$ then $\langle \epsilon_3 \rangle \nearrow$ and $\langle \epsilon_2 \rangle \searrow$

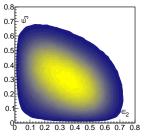
and $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle$, $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle$ / tending to $\sqrt{4/\pi-1} \sim 0.52$

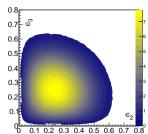
No clusters:


similar behavior for n=2 and n=3

38 / 46

Shape-flow transmutation

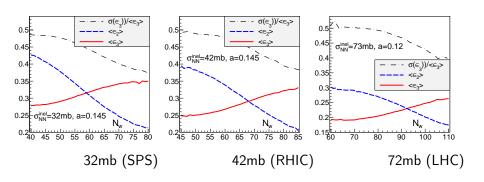

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow It has been found that


 $\langle v_n
angle$ grows with $\langle \epsilon_n
angle$

ightarrow for $^{12}{
m C}$ collisions v_3 will grow with multiplicity even stronger than ϵ_3

Triangularity vs ellipticity

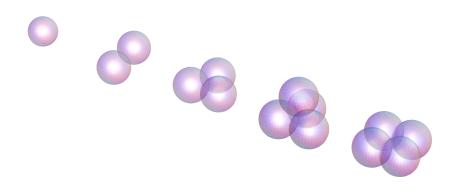
clustered

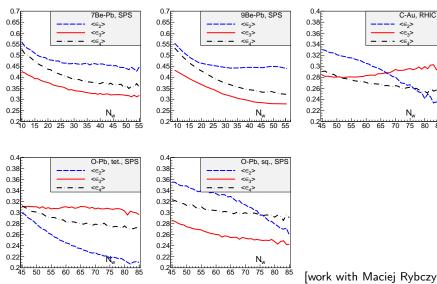

unclustered

Clusters:

Anticorrelation: $\rho(\epsilon_2,\epsilon_3) \simeq -0.3$

WB (IFJ PAN) lpha clusters IFJ PAN 2014 40 / 46


Dependence on the collision energy


Qualitative conclusions hold from SPS to the LHC

WB (IFJ PAN) lpha clusters IFJ PAN 2014 41 / 46

Other systems

Other systems (Wiringa's distributions)

[work with Maciej Rybczyński]

Conclusions

WB (IFJ PAN) lpha clusters IFJ PAN 2014 44 / 46

Why small on big?

small on big

small nucleus \rightarrow large deformation from clusters big nucleus \rightarrow large fireball, collectivity

small on small

more difficult evolution / particle production, other signatures

big on big

 $(U+U, Cu+Au) \rightarrow possible signatures of nuclear deformation (but not clustering) [Filip, Voloshin 2010, Rybczyński, WB, Stefanek 2011]$

ultrarelativistic \rightarrow snapshots

WB (IFJ PAN) lpha clusters IFJ PAN 2014 45 / 46

New method: nuclear structure from ultra-fast heavy ion collisions / Geometry of the ground state \rightarrow flow

Signatures (qualitative and quantitative) of clustered $^{12}\text{C-}^{208}\text{Pb}$ collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Decrease of scaled variance of triangularity with multiplicity for the highest multiplicity events
- Anticorrelation of ellipticity and triangularity

Extensions (in progress)

- Other systems and other possible signatures
- More detailed modeling involving hydrodynamics

Possible future data (NA61, RHIC?) in conjunction with a detailed knowledge of the dynamics of the evolution of the fireball would allow to place constrains on the α -cluster structure of the colliding nuclei. Conversely, the knowledge of the clustered nuclear distributions may help to verify the fireball evolution models