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Instead of outline

Two phenomena are related:

« clustering in light nuclei

harmonic flow in ultra-relativistic A+B collisions

Surprising link:

low-energy structure <— highest energy reactions
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o clusters
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David Brink: After Gamow's theory of a-decay it was natural to investigate
a model in which nuclei are composed of a-particles. Gamow developed a
rather detailed theory of properties in his book "Constitution of Nuclei"
published in 1931 before the discovery of the neutron in 1932. He supposed
that 4n-nuclei like 8Be, 2C, 160 ... were composed of a-particles
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Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that
comprise equal numbers of protons and neutrons, (e.g., 12C and 1°0) were
identified that could not be described by the shell model, and it was
suggested by lkeda and others that these states could be associated with
configurations composed of « particles

Also: problems with o decay of 212Po
shell model predicts a way too small decay width
spectroscopy: 212Po = 298Pb+4-q [Astier et al. 2014]
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Fragmentation

Evidence from dissociation in nuclear track emulsions
[Zarubin 2013 (BECQUEREL)]
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Example: dissociation of "Be (energy of a few A GeV)

channel |*He4+’He S3He+’He “He+2p *He+d+p °He+2p Z3He+d+p °3He+2d SHe+t+p 3p+d OLi+p
N 30 11 13 10 9 8 1 1 2 9
% 31 12 14 11 10 9 1 1 2 10

Numerous ongoing experiments (GANIL, Osaka, ...)

Was the cluster there or is it created at break-up?
These studies cannot reveal the geometry (cluster arrangement)
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Present theory status
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160

Ab initio calculations of 0 with chiral NN force (Juelich 2014)
— strong « clusterization
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Computational techniques

(massive effort)

Funaki et al.: certain states in self-conjugated nuclei ... can be described as
product states of a particles, all in the lowest 0S state. We define a state
of condensed o particles in nuclei as a bosonic product state in good
approximation, in which all bosons occupy the lowest quantum state of the
corresponding bosonic mean-field potential (a«BEC)

Another approach: Fermionic Molecular Dynamics (FMD)

Quantum Variational Monte Carlo (with 2- and 3-body forces) for A=2-12
[R. Wiringa et al., http://www.phy.anl.gov/theory/research/density/]

All approaches to light nuclei give clusters

Goal (not yet accurately reached):

reproduce ground-state energy, excitation spectrum, EM form factor, ...
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Flow
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A-+A collisions

Au+Au collision at RHIC
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|dea of flow

“Initial shape — final flow”" transmutation detectable in the asymmetry of
the momentum distribution of detected particles
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Elliptic flow

< —
S =z
5 =
T
0 ? 2n 0 0 2n
[ALICE]
a clusters IFJ PAN 2014 14 / 46

WB (IFJ PAN)



Major observation in HIC — signature of QGP
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Harmonic flow

Participants:

o initial fireball is asymmetric in the
transverse plane from 1) geometry
2) fluctuations

@ collectivity! — flow generated

e strong elliptic flow, triangular flow
from fluctuations, higher-order flow
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Merge the two ideas (a's and flow) —
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From « clusters to flow in relativistic collisions

« clusters — asymmetry of shape — asymmetry of initial fireball —
— hydro or transport — collective harmonic flow

nuclear triangular geometry — fireball triangular geometry — triangular flow

What are the signatures, chances of detection? ]

Related idea: triton/3He—Au at RHIC in 2015 [Sickles (PHENIX) 2013]
The case of light nuclei is more promising, as it leads to abundant fireballs
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12C2%pPh — single event

why ultrarelativistic?

reaction time is much shorter than time scales of the structure
— a frozen “snapshot” of the nuclear configuration
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[simulations with GLISSANDO 2]
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... more events
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more events
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... more events
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... more events
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... more events
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... more events
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... more events

y [fm]

A d N A O LN W S O

WB (IFJ PAN) a clusters IFJ PAN 2014 26 / 46



... more events
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The meaning of intrinsic

Ground state of 2C is a 0T state (rotationally symmetric wave function).
The meaning of deformation concerns multiparticle correlations between
the nucleons

Superposition over orientations: J

1

|\Ifo+(331,...,.%'N)> = M/dﬂq/intr(g}l;---,iUNSQ)

The intrinsic density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned principal axes:
fintr(7) = (f(R(—®,)Z)). Brackets indicate averaging over events and
R(—®,,) is the inverse rotation by the principal-axis angle in each event
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Back to '2C — intrinsic density

Intrinsic distributions in 12C: three o's in a triangular arrangement
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Constraints on 2C from EM form factor
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Electric charge density (dashed line) and the corresponding distribution of
the centers of protons (solid line) in 12C for the data plotted against the

radius, for the BEC calculation — agrees with the experimental data for the
charge form factor

Central depletion naturally explained with the hole between the clusters J
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12C from Wiringa's MC
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12C from Wiringa's MC
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GLISSANDO implements these clustered distributions

— carry out detailed simulations
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12C_208ph collision

Intrinsic distributions in the transverse plane of the fireball (here with
Ny, > 70 — large multiplicity enforcing the flat-on collision)
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Geometry of nucleus — geometry of fireball
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Eccentricity parameters

Eccentricity parameters ¢, (Fourier analysis)
n _ing;
ind, _ 22j P

] _24Pie
" 2. Pf

describe the shape of each event (j labels the sources in the event,
n=rank, ®,, is the principal axis angle)

Two components:

e internal (from existent mean deformation of the fireball)

@ from fluctuations
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Digression: d-A by Bozek

The deuteron has an intrinsic dumbbell shape with very large deformation:
rms ~ 2 fm J

Initial entropy density in a d-Pb collision with Ny, = 24 [Bozek 2012]
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Resulting large elliptic flow confirmed with the later RHIC analysis
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Digression 2: collectivity in small systems

Active research:

hydro in p-A, d-A collisions, pioneered by Bozek
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Geometry vs multiplicity correlations in 12C-Pb

Specific feature of the 2C collisions:

The cluster plane parallel or perpendicular to the transverse plane: J
higher multiplicity lower multiplicity
higher triangularity lower triangularity
lower ellipticity higher ellipticity
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Ellipticity and triangularity vs multiplicity

051 05
3 F
0.45E o.45£— E—
04F SN 0.4F o())<0p>
0.35 0.350 === F
L L <[>
0.3~ N 0.3=x &
F \\ E\M
0.25- N 0.25F \§r\7"“‘
\ r ~
0240 487505560 65" 70 7580 0240 487505560 6570 75" 80
clustered unclustered

When N,  then (e3) 7 and (e2) \

and (o(e3)/e3) \y, (0(€e2)/e2) /" tending to y/4/m — 1 ~ 0.52

similar behavior forn =2 and n = 3 l

WB (IFJ PAN) a clusters IFJ PAN 2014 38 / 46




Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on

collective dynamics) into asymmetry of the transverse-momentum flow
It has been found that
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Triangularity vs ellipticity
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Anticorrelation: p(eg, €3) ~ —0.3
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Dependence on the collision energy
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Qualitative conclusions hold from SPS to the LHC
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Other systems
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Other systems (Wiringa's distributions)
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Conclusions
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Why small on big?

small on big

small nucleus — large deformation from clusters
big nucleus — large fireball, collectivity

more difficult evolution / particle production, other signatures

(U+U, Cu+Au) — possible signatures of nuclear deformation (but not
clustering) [Filip, Voloshin 2010, Rybczynski, WB, Stefanek 2011]

ultrarelativistic — snapshots
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New method: nuclear structure from ultra-fast heavy ion

collisions / Geometry of the ground state — flow

Signatures (qualitative and quantitative) of clustered 12C-298Pb collisions

@ Increase of triangularity with multiplicity for the highest multiplicity
events

@ Decrease of scaled variance of triangularity with multiplicity for the
highest multiplicity events

@ Anticorrelation of ellipticity and triangularity

Extensions (in progress)

@ Other systems and other possible signatures
@ More detailed modeling involving hydrodynamics

Possible future data (NA61, RHIC?) in conjunction with a detailed
knowledge of the dynamics of the evolution of the fireball would allow to
place constrains on the a-cluster structure of the colliding nuclei.
Conversely, the knowledge of the clustered nuclear distributions may help
to verify the fireball evolution models
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