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Exclusive processes in QCD

non-zero momentum transfer to the target, at least one photon virtual, factorization

Deeply
Virtual
Compton
Scattering

Hard
Meson
Production



Kinematics

Reviews:

K. Goeke, M. V. Polyakov, and M. Vanderhaeghen,
Prog. Part. Nucl. Phys. 47 (2001) 401-515, hep-ph/0106012

M. Diehl, Phys. Rept. 388 (2003) 41-277, hep-ph/0307382

Notation: P = I%pl, A=p —p t=A%kt =zPT, AT = -2(PT

Dictionary:
t=0& &=0 | regular PD
Al =0 forward GPD
A #0 off-forward GPD
£E=0 diagonal GPD
(non-skewed GPD)
E#0 non-diadonal GPD
(skewed GPD)




Why interesting?

GPD’s provide more detailed information of the structure of hadrons,
three-dimensional picture instead of one-dimensional projection of the
usual PD, enter sum rules,

Information on GPD may come from such processes as ep — ep,
yp — plTl~, ep — epl™l~, or from lattices (hold on!). Small cross sections

of exclusive processes require very high accuracy experiments. First results
are coming from HERMES and CLAS, also COMPASS, H1, ZEUS



Definition of the impact-parameter-dependent GPD (bGPD)

The twist-2 GPD of the pion is defined as
(for the case of 7 H(z) = H,(z) = Hz(1 — z))

Az~ .- _ zZ- z-
H(ajaga _A3_> — Ee g <7T+(p/)‘Q(Oa _770>7+Q(07770>|W+(p)>7

(Notation: ¢(z7,27,21), 22=10)

Link operators P exp(ig foz dx* A, are implicitly present to ensure gauge
invariance

Similar definition for the gluon distribution



Dictionary continued

General structure of the soft matrix element:

(A0 B)

e A = B = one-particle state — PD of A (inclusive DIS)

e A = one-particle state, B = vacuum — distribution amplitude (DA) of A
(hadronic form factors, HMP)

e A, B = one-particle state of different momentum — GPD (exclusive DIS,
DVCS, HMP)

e A = many-particle state, B = vacuum — GDA (transition form factors)



Formal properties of GPD'’s

H(z,¢,—-A%) = H(x,—¢, —A%) (time reversal)
H(ZC, 57 _Ai)* — H(ZC, _fa _Aﬁ_) (realitY)
1
/ deH(z,&,—A%) = F(—A3) (form factor)
0
H(x,0,0) = gq(z) (parton distribution)

GPD “links” the elastic form factor and the parton distribution (more
interesting results for the case of nucleon, its spin, ...)



Evaluation in chiral quark models, £ = 0 (diagonal, off-forward)

In chiral quark models the evaluation of H at the leading-/N. (one-loop)
level amounts to the calculation of the diagram

where the solid line denotes the quark of mass w.

N w2 d*k 1 1 1
H(z,0,—-A2:w) = -—° / T
(@0, ~A%;w) R RO [ T Ly T —

x 6k —(1—a)PT],




with f. = 93 MeV. The light-cone coordinates are defined as
kP =0+ K, k= kC— k3, kL = (k' K?)

The calculation is done in the Breit frame, and with A™ = 0 and
P = (my,my,0). The Cauchy theorem is applied for the k£~ integration,
yielding in the chiral limit

H(l‘, 07 _Aﬁ_v CU)

K ‘A (1—-x)
 Nuw? /d2KL [1 + e }
T2 ) 2K+ (1—2)AL )2 o2

where K| = (1 — x)p. — xk, . The integral is log-divergent, and we
need regularization



Digression: unintegrated distributions

If we did not carry the integration over d?k |, we would be left with
unintegrated distributions (Kwiecinski). The most general object one can
consider is therefore the unintegrated skewed off-forward parton

distribution



Impact-parameter representation

We may pass to the space conjugated to A | — the impact-parameter space

d*AL g
(ha) = [ Gobe A H(.0.-A)

A dA
— / = J_Jo(bAJ_)H(x,O,—Ai).
0 2T
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Regularization

We use two different low-energy quark models which have proven
successful in describing soft physics:

1. Spectral Quark Model [SQM] (ERA + WB). Successful in describing
both the low- and high-energy phenomenology of the pion (complies to
the chiral symmetry, anomalies, pure twist expansion, quark propagator
with no poles!).

2. Nambu—Jona-Lasinio [NJL] model with the Pauli-Villars regulator.
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Spectral Quark Model

SQM amounts to supplying the quark loop with an integral over the quark
mass w weighted by a quark spectral density p(w),

Hsom(z,0,—A2) = | dwpy(w)H (2,0, —A%;w),
Q 1 - 1

where () = 1 3n°m3f21 1
PV = omi AN, w(m?/4 —w?)5/%

and the contour C' is given by
w-Complex Plane
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Then

2(, 2 2 A2
o -t - 08
We check that 2 _ 24]7;2;3
1 m2
F(t) :/O dxHgom(z,0,t) = m%:—t’

which is the built-in vector-meson dominance principle. Clearly, F'(0) = 1, correct norm
and Hsom(z,0,0) = 0(2)0(1 — x) [Davidson-Arriola, 1995]. We pass to & support
the impact-parameter space by the Fourier-Bessel transformation and get

2 bimn. bm bm
_ |k P - K ~|-
QSQM(bax) 27r(1—ac)2 [ 0 (1—x) 1l —2x ' (1—95)]
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Nambu—Jona-Lasinio Model

In the NJL model with the Pauli-Villars regularization we get

Hygn(z,0,-A%) = 1+

472 f2s,

- \/(1—x>2A1+4M2+4A§,

where M is the constituent quark mass, A; are the PV regulators, and ¢;
are suitable constants. For the twice-subtracted case, explored below, one
has, for any regulated function F', the operational definition

Y GiF(A7) = F(0) — F(A?) + A’dF(A?)/dA*,

)

In what follows we use M = 280 MeV and A = 871 MeV, which yields
fr =93 MeV.

Nle—CC‘AJJ S,L ( )|A_|_‘
Z"”g( — —a:>|AL\)’

correct norm
& support
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Lattice results

Simon
| : Dalley
1 211} transverse lattice, Q~500 MeV (S. Dalley)
—~ 0.8
o) all
L 0.6
= [0,0]
0.4}
0.2\ [1,0]
0.2 0.4 0.6 0.8 1

X

(V (b, x) — nonsinglet (valence) quark distribution )

For 7t we have V =u—u—d+d
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Smearing over b

’ ’ [0,1.] [1,1]. ’
[} [} [0,0.] [1,0]. [ J
by ¢ o o o o lbo~2/3 fm
b,
(i+1/2)bg (7+1/2)bg
Viz,li,j]) = / dbx/ db,V (x, /b2 + bz)
(i—1/2)bg (1—1/2)bo

The degeneracy factor for plaquettes equidistant from the origin is
included, i.e. the [1,0], [1,1], and [2,0] plaquettes are multiplied by 4,
2,1] by 8, etc.
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121 chiral models, Q=Q, (a)

P

0.2 04 06 08 1
1.2 transverse lattice, Q~500 MeV (b)

V(b,x)

0.2 0.4 0.6 0.8 X 1

(a) SQM (solid) and NJL (dashed) at @ = Q¢ = 313 MeV. (b) Transverse lattice
[Dalley 2003]. The initial condition of (a) needs to be evolved to a higher scale!



QCD evolution and the quark-model scale, ()

The models have produced GPD coresponding to a low, a priori unknown
quark model scale, (). A way to estimate it is to run the QCD evolution
starting from various (Jy’'s up to a scale () where data can be used.

QCD EVOLUTION IS OBVIOUSLY A NECESSARY STEP!
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LO DGLAP

The evolution of the diagonal (¢ = 0) GPD's proceeds as the evolution of
PD’s. We use here the LO DGLAP. Note that the kernel is independent of
A |, or b. For the non-singlet (valence) quarks

A 2 1
Q28V(xa,g2, Do 0452(7? )/O d2Py(2) [0(z = 2)V (5, Q. B1) = V (2, Q, AL)
401+ Z%)
Pog(z) = 3 (1—2)
41 1
@ = (5) s
Bo = 11—-2Np/3, Np=3, Aqgcp =226 MeV

The integro-differential equation can be cast in the form of differential
equations in the moment space (Mellin transform).
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One introduces the z-moments

1
Va(Q, A1) = /o dzx x’"’_l‘/(x,Q,AL)

Then we acquire a (diagonal in n) set of equations

OV (Q, A1)  as(Q?)
0()? - 872

fYnVn(Qa AJ_)

where the anomalous dimensions are given by

1 n
8 2 2 1
n = dz(1 —2")Pyq = 4H, — 31, H, = —
8l /0 z2(1 —2") Py, 3< +n+1+n+2 ) 2+
These equations are integrated trivially, yielding
V(@ A1) = Va(Qo, A1) /Q2 10?259 _y, gy a) (2590
n 9 1) — n 0 1 eXp Qg Q,2 T n 0 4 OZS(Q%)
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Inverse Mellin transform

We need to go back to the z-space

Vi, QAL = / dna="V, (Q, A L)
C
With n = ng + @t we have
Vie,Q,A)) = 2/ dt x~ "0 [cos(tlog z)ReV,(Q, A1) + sin(tlog z)ImV,, (Q, A )]
0

This integral can be very easily done numerically!

All takes a few lines in Mathematica
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Determination of ()

The scale Qg (the quark-model scale) is defined as the scale where all
momentum of the hadron is carried by the valence quarks. The valence
contribution to the energy momentum tensor evolves as

vvf<(§o>> - (5((53))32/81.

In [SMRS, 1992] at Q = 2 GeV the valence quarks carry 47% of the total
momentum of the pion. Downward LO evolution requires

Vi(Qo) =1, G1(Qo) + S1(Qo) = 0,

which gives
Qo = 313150 MeV.

Rather low! One can hope that the typical expansion parameter
a(Qo)/(2m) ~ 0.34 + 0.04 makes the perturbation theory still meaningful.
NLO supports this assumption [Davidson + ERA, 2002]. Similar estimate
for ()o has been obtained from an analysis of pion DA [ERA + WB,2002].
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Comparison of the forward distribution to SMRS’92

(V(z,Qo) = 0(2)0(1 — z), Q =2 GeV)
SQM, by=2/3 fm

SMRS '92

0.4,

0.3

0.2

xV(b,x)

0.1
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Comparison of the forward distribution to Fermilab’s E615

[J. S. Conway et al., PRD 39 (1989) 92], 7= N — ppu~ X
(V(z,Qo) =60(x)0(1 —z), Q =4 GeV)

0. 35 %ﬁ 03 pion
0 3 s % %ﬁ%%@@ E615
0.25 7/
_0.25 %
X 0.2 // i%%
?<0.15/ R
0.1 / \%g%
0.05 | %,
02 o4 o6 o8 1

X
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QCD evolution of the diagonal non-forward V (x, @, b)

We apply the evolution to the smeared functions,

+ico g Yn/(260) ,1
Vi Qi) = [ gt (ST [ e v Qi)

where the distribution at the scale ()q is the prediction of either of the
two considered chiral quark models

.. and the results are ...
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SQM, b,=2/3 fm

1.

V(b,x)
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2,01

transverse lattice, Q~500 MeV (S. Dalley)
[i.il: by=ibg, by=jbg, by~2/3 fm

0.8 1

qualitative
agreement
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SQM, b,=0.8* 2/3 fm

1.2 313 MeV
all

V(b,x)

1.2 transverse lattice, Q~500 MeV (S. Dalley)
[i]: by=ibg, by=jbg, by~2/3 fm
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Results and conclusions

Chiral quark models provide GPD at a low scale, (. The results are simple, especially
for SQM

The quark model scale Q¢ can be estimated with the help of the momentum fraction
carried by the valence quarks. We note that the value is consistent with previous
analysis based both on the forward parton distribution amplitudes as well as the light
cone wave function

Predictions of the two considered models, SQM and NJL, are qualitatively the same,
with the NJL curves pushed to somewhat lower values of «

Large effect of the DGLAP evolution on the distribution functions. Strength moved to
lower values of x

At QQ = 2 GeV the result for the forward distribution agrees very well with the SMRS
parameterization of the pion structure function [Davidson-Arriola, 1995]

At QQ = 4 GeV the result for the forward distribution agrees very well with the
Fermilab E615 experiment!

The results for the plaquette [0, O] follow, at large x, the forward distributions. This
is clear from the dependence of the initial function on the variable b/(1 — ). As

x — 1, the integration over the [0, O] plaquette is the same as the integration over
the whole b-space

At Q@ = 400 MeV and 500 MeV the values of V (x, @, [0, 0]) reach a maximum at
an intermediate value of x, and develop a dip at low x. This is in qualitative
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agreement with the transverse-lattice data. We note that there the dip at low «x is
lower than in our model calculation, yet, in view of the simple nature of our model and
approximations (chiral limit, LO evolution, evolution independent of b, uncertainties in
the determination of by and @ on the lattice) the similarity is quite satisfactory. We
have checked that if the value the lattice-spacing parameter, bg, were lowered, an even
more quantitative agreement would follow

The results for non-central plaquettes also qualitatively agree with the lattice
measurements. In this case at x — 1 the corresponding functions vanish very fast, in
accordance to our model formulas

A difference with the lattice results is that in our case the farther plaquettes naturally
bring less and less, and the yield from the [2, 0] plaquette is lower than for the [1, 1]
plaquette

In summary, the obtained agreement of our approach, based on non perturbative chiral
quark models in conjunction with perturbative LO DGLAP evolution, with the data
from the transverse lattices, is quite remarkable and encouraging, baring in mind the
simplicity of the models and the apparently radically different handling of chiral
symmetry in both approaches

Our analysis might be reinforced by extending our calculation to include the NLO
perturbative corrections. Such a study is left for a future research
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BACKUP slides

30



Behavior at £ — 1

A function that initially behaves as V' (z, Qo, b) — C'(b)(1 — x)” evolves into

ACE

. «(Q)
V(z,Q,b) = C(b)(L—x)

O‘(QO), r — 1.

log
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Moments in SQM

In the Spectral Quark Model

Vn(QOv b) —
2 2012 n—1 n 2,02 n n+l
e et ()R ) e (| on
r2n+3 ’ _17 T 9y T 959 ’ 4 _5707

where (G denotes the Meijer G function. This form can be useful for further analytic

considerations.

32



Scaling in b/(1 — z)

Generally, the chiral quark model (one-loop) results depend on A and x only through
the combination (1 — x)?AZ . Consequently, in the b space they depend on the
combination b*/(1 — x)*. Due to this property

This means, that all the moments except for n = 0 vanish as ¢ — 1, or q(b, x)
becomes a §(b) function in this limit. This behavior is seen in the transverse lattice data.
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