p_T fluctuations and multiparticle clusters in heavy-ion collisions

("CLUSTER SCALING")

Wojciech Broniowski Świętokrzyska Academy, Kielce & IFJ PAN Cracow Florence, 8 July 2006

Based very closely on WB, Hiller, Florkowski, Bożek, nucl-th/0510033, Phys. Lett. **B635** (2006) 290

A simple way of doing the statistics

• - variable dividing into classes (multiplicity n), dynamical variable $p_i = |\vec{p}_{T,i}|$

• - divide the events into classes of the same $n,\ P(n)=N(n)/N_{\rm all}$ is the probability of obtaining event of multiplicity n

• - n and p_1, p_2, \ldots, p_n vary from event to event. The probability of a given configuration is $P(n)\rho_n(p_1, \ldots, p_n)$, where $\rho_n(p_1, \ldots, p_n)$ is the conditional probability distribution of occurrence of p_1, \ldots, p_n provided we have multiplicity n. Note ρ_n depends functionally on n. The normalization is

$$\sum_{n} P(n) = 1, \quad \int dp_1 \dots dp_n \rho_n(p_1, \dots, p_n) = 1$$

The marginal probability densities are defined as

$$ho_n^{(n-k)}(p_1,\ldots,p_{n-k})\equiv\int dp_{n-k+1}\ldots dp_n
ho_n(p_1,\ldots,p_n),$$

with $k = 1, \ldots, n - 1$. These are also normalized to 1

• We introduce

$$egin{array}{lll} \langle p
angle_n &\equiv \int dp
ho_n(p)p, \quad \mathrm{var}_n(p) \equiv \int dp
ho_n(p) \left(p-\langle p
angle_n
ight)^2, \ &\mathrm{cov}_n(p_1,p_2) &\equiv \int dp_1 dp_2 \left(p_1-\langle p
angle_n
ight) \left(p_2-\langle p
angle_n
ight)
ho_n(p_1,p_2). \end{array}$$

The subscript n indicates that the averaging is taken within samples of a given multiplicity n

• - Remark: note that I am not using the the inclusive quantities, defined through the *inclusive* probability distributions related to the marginal probability distributions in the following way:

$$\rho_{\text{in}}(x) \equiv \sum_{n} P(n) \int dp_1 \dots dp_n \sum_{i=1}^n \delta(x-p_i) \rho_n(p_1,\dots,p_n) = \sum_{n} n P(n) \rho_n(x),$$

$$\rho_{\text{in}}(x,y) \equiv \sum_{n} P(n) \int dp_1 \dots dp_n \sum_{i,j=1,j\neq i}^n \delta(x-p_i) \delta(y-p_j) \rho_n(p_1,\dots,p_n)$$

$$= \sum_{n} n(n-1) P(n) \rho_n(x,y)$$

which are normalized to $\langle n\rangle$ and $\langle n(n-1)\rangle,$ respectively

• - Define wider classes, $1 \le n_1 \le n \le n_2$, $\sum_n = \sum_{n=n_1}^{n_2}$

ullet - For the variable $M=\sum_{i=1}^n p_i/n$ we find immediately an *exact* result

$$\begin{split} \langle M \rangle &= \sum_{n} P(n) \int dp_{1} \dots dp_{n} M \rho_{n}(p_{1}, \dots, p_{n}) = \sum_{n} P(n) \langle p \rangle_{n}, \\ \langle M^{2} \rangle &= \sum_{n} P(n) \int dp_{1} \dots dp_{n} M^{2} \rho_{n}(p_{1}, \dots, p_{n}) \\ &= \sum_{n} \frac{P(n)}{n} \langle p^{2} \rangle_{n} + \sum_{n} \frac{P(n)}{n^{2}} \left[\sum_{i,j=1,j\neq i}^{n} \operatorname{cov}_{n}(p_{i}, p_{j}) + n(n-1) \langle p \rangle_{n}^{2} \right] \\ \sigma_{M}^{2} &= \sum_{n} \frac{P(n)}{n} \sigma_{p,n}^{2} + \sum_{n} P(n) \left(\langle p \rangle_{n} \right)^{2} - \left(\sum_{n} P(n) \langle p \rangle_{n} \right)^{2} + \\ &+ \sum_{n} \frac{P(n)}{n^{2}} \left[\sum_{i,j=1,j\neq i}^{n} \operatorname{cov}_{n}(p_{i}, p_{j}) \right] \end{split}$$

A look at some data:PHENIX @ 130 GeV

$ \eta < 0.35$, $0.2 < p_T < 1.5$ GeV, $\Delta \phi = 45^o$						
	centrality	0-5%	0-10%	10-20%	20-30%	
	$\langle n \rangle$	59.6	53.9	36.6	25.0	
	σ_n	10.8	12.2	10.2	7.8	
	$\langle M \rangle$	523	523	523	520	
	σ_p	290	290	290	289	
	σ_M	38.6	41.1	49.8	61.1	
	$\langle M \rangle^{\rm mix}$	523	523	523	520	
	$\sigma_M^{ m mix}$	37.8	40.3	48.8	60.0	

PHENIX, PRC66 (2002) 024901, nucl-ex/0203015

 $\langle M \rangle$ and σ_p are practically constant in the "fiducial" centrality range c = 0 - 30% (1) (1) allows us to replace $\langle p \rangle_n$ with $\langle M \rangle$ and $\sigma_{p,n}^2 = \langle p^2 \rangle_n - \langle p \rangle_n^2$ with σ_p^2 :

$$\sigma_M^2 = \sigma_p^2 \sum_n \frac{P(n)}{n} + \sum_n \frac{P(n)}{n^2} \left[\sum_{i,j=1,j\neq i}^n \operatorname{cov}_n(p_i, p_j) \right]$$

[corrections can be worked out]

In mixed events, by construction, particles are not correlated, hence the covariance term vanishes and

$$\sigma_M^{2,\text{mix}} = \sigma_p^2 \sum_n \frac{P(n)}{n} \simeq \sigma_p^2 \left(\frac{1}{\langle n \rangle} + \frac{\sigma_n^2}{\langle n \rangle^3} + \dots \right)$$
(2)

where we have used the fact that P(n) is narrow and expanded $1/n = 1/[\langle n \rangle + (n - \langle n \rangle)]$ to second order in $(n - \langle n \rangle)$

centrality	0-5%	0-10%	10-20%	20-30%	
$\langle n \rangle$	59.6	53.9	36.6	25.0	
σ_n	10.8	12.2	10.2	7.8	
σ_p	290	290	290	289	
$\sigma_M^{ m mix}$	37.8	40.3	48.8	60.0	
$\sigma_p \sqrt{rac{1}{\langle n angle} + rac{\sigma_n^2}{\langle n angle^3}}$	38.2	40.5	49.8	60.8	

(2) works within 1% [which is a trivial statistical statement checking that our approximations work]

Subtracting the last two equations yields

$$\sigma_{\rm dyn}^2 \equiv \sigma_M^2 - \sigma_M^{\rm mix,2} = \sum_n \frac{P(n)}{n^2} \sum_{i,j=1,j\neq i}^n \operatorname{cov}_n(p_i, p_j) \simeq \frac{1}{\langle n \rangle^2} \sum_{i,j=1,j\neq i}^{\langle n \rangle} \operatorname{cov}(p_i, p_j) \quad (\mathbf{3})$$

centrality	0-5%	0-10%	10-20%	20-30%
$\langle n \rangle$	59.6	53.9	36.6	25.0
σ_M	38.6	41.1	49.8	61.1
$\sigma_M^{ m mix}$	37.8	40.3	48.8	60.0
$\sigma_{ m dyn} \sqrt{\langle n angle}$	60.3 ± 1.6	59.2 ± 1.5	59.8 ± 1.2	57.7 ± 1.1

 $\sigma_{\rm dyn}^2 \sim 1/\langle n \rangle$ (within 2%, round-off errors!), which together with (3) places severe constraints on physics – not all particle can be correlated!

Multiparticle clusters (in momentum space)

The average number of correlated pairs within a cluster is $\langle r(r-1)/2 \rangle$. Some particles may be unclustered, hence $\langle N_{\rm cl} \rangle \langle r \rangle / \langle n \rangle = \alpha$. Then

$$\sigma_{\rm dyn}^2 = \frac{\alpha \langle r(r-1) \rangle}{\langle r \rangle \langle n \rangle} {\rm cov}^* = \frac{\alpha r^*}{\langle n \rangle} {\rm cov}^*, \quad r^* = \frac{\langle r(r-1) \rangle}{\langle r \rangle},$$

which complies to the scaling of σ_{dyn} if $\alpha r^* cov^*$ is independent of $\langle n \rangle$ (in the fiducial centrality range). For a fixed number of particles in each cluster we have $r^* = \langle r \rangle - 1$, for the Poisson distribution $r^* = \langle r \rangle$, while for wider distributions $r^* > \langle r \rangle$.

Cluster scaling

If the multiplicity of produced particles $\langle n\rangle$ is used - sensitive to final state, if $\langle n\rangle \to N_p$ - sensitivity to initial state

Try both, *i.e* use also just $\langle n \rangle$ to define the classes

Comply to scaling: PHENIX@130, STAR perhaps except for 130, CERES (within error bars), PHENIX@200 - fixed plane,

```
Scaling violations: PHENIX@200 (random), NA49 (try \langle n \rangle instead of N_p)
```

```
[Paul Sorensen's plot]
```

STAR

STAR, hep-ph/0504031 $\frac{dN}{d\eta} \langle \Delta p_i \Delta p_j \rangle \simeq \sigma_{\rm dyn}^2 \langle n \rangle / \Delta \eta \sim const.$

CERES

Works approximately quite well! (errors large)

How strong are the correlations?

a - detector efficiency, number of observed particles $\sim a$, number of pairs $\sim a^2.$ Thus

$$\operatorname{cov}^* = \sigma_{\operatorname{dyn}}^2 \frac{\langle n \rangle}{ar^*}.$$

For PHENIX@130 $a \simeq 10\%$, which gives

$$\operatorname{cov}^* \simeq \frac{0.035 \text{ GeV}^2}{r^*}.$$

The natural scale set by $\sigma_p^2 \simeq 0.08 \text{ GeV}^2$ (recall that $|\cos^*| \le \sigma_p^2$). For r = 2 the value of \cos^* would assume 45% of the maximum possible value. This is unlikely, as argued from model estimates presented below, where \cos^* at most 0.01 GeV^2 . Thus a natural explanation of the above number is to take a significantly larger value of r^* . The higher r^* , the easier it is to satisfy the data even with small values of \cos^* .

Same for STAR

Very similar quantitative conclusions from the STAR data [nucl-ex/0504031]. The measure used by STAR is the estimator for σ_{dvn}^2 :

$$\langle \Delta p_i \Delta p_j \rangle = \frac{N_{\text{event}} - 1}{N_{\text{event}}} \sigma_M^2 - \frac{1}{N_{\text{event}}} \sum_{k=1}^{N_{\text{event}}} \frac{\sigma_p^2}{n_k} \simeq \sigma_{\text{dyn}}^2 \tag{1}$$

Assuming a = 0.75 we find

 $\operatorname{cov}^* r^* = 0.058, 0.043, 0.035, 0.014 \ \mathrm{GeV}^2$ for $\sqrt{s_{NN}} = 200, 130, 62, 20 \ \mathrm{GeV}$

The value at 130 GeV is close to PHENIX. Significant beam-energy dependence! This may be due to increase of the covariance per pair with energy, and/or increase of the number of clustered particles

What is the nature of clusters?

• - (mini)jets, resonances, droplets of matter receding at the same collective velocity

"Lumped clusters": lumps of matter move at some collective velocities, correlating the momenta of particles belonging to the same cluster

$$\operatorname{Covariance from the decay of resonances}_{\operatorname{res}} = \frac{\int d^3 p \int \frac{d^3 p_1}{E p_1} \int \frac{d^3 p_2}{E p_2} \,\delta^{(4)}(p - p_1 - p_2) C \frac{dN_R}{d^3 p} \left(p_1^{\perp} - \langle p^{\perp} \rangle \right) \left(p_2^{\perp} - \langle p^{\perp} \rangle \right)}{\int d^3 p \int \frac{d^3 p_1}{E p_1} \int \frac{d^3 p_2}{E p_2} \,\delta^{(4)}(p - p_1 - p_2) C \frac{dN_R}{d^3 p}}$$

 dN_R/d^3p - resonance distribution from the Cooper-Frye formula with the single freezeout model, p_1 , p_2 - momenta of daughters, E_p - energy of the particle with momentum p, C - cuts the chocov2.nb

Cancellations between contributions of various resonances are possible; Therminator - negligible contribution of resonances to the p_T correlations. Accidental zero near the ρ -meson mass, need of accurate implementation of cuts.

Broniowski, Florence 2006

1

Thermal clusters

Emission from local thermalized sources: each element of the fluid moves with its collective velocity and emits particles with locally thermalized spectra. The picture refelects charge conservation within the local source [Bożek, WB, Florkowski, Acta Phys. Hung. A22 (2005) 149].

$$\operatorname{cov}_{i,j}^{*} = \frac{\int d\Sigma_{\mu} u^{\mu} \int d^{3}p_{1}(p_{1}^{\perp} - \langle p^{\perp} \rangle) f_{i}^{u}(p_{1}) \int d^{3}p_{2}(p_{2}^{\perp} - \langle p^{\perp} \rangle) f_{j}^{u}(p_{2})}{\int d\Sigma_{\mu} u^{\mu} \int d^{3}p_{1} f_{i}^{u}(p_{1}) \int d^{3}p_{2} f_{j}^{u}(p_{2})}$$

 $f_i^u(p) = (\exp(p \cdot u/T) \pm 1)^{-1}$ - boosted thermal distribution, u(x) -expansion velocity, $d\Sigma_\mu$ - integration over the freeze-out hypersurface. Fix flow such that $\langle M \rangle = 554$ MeV

$T \; [MeV]$	10	100	120	140	165	200
$\langle \beta \rangle$	0.94	0.72	0.69	0.58	0.49	0.31
$\sigma_p^2~[{ m GeV}^2]$	0.056	0.19	0.15	0.15	0.14	0.12
$\operatorname{cov}^*[GeV^2]$	0.027	0.011	0.0088	0.0063	0.0034	0.0006

Results depend strongly on temperature. At realistic thermal parameters the experimental value of the covariance, $0.035 \text{ GeV}^2/r^*$, cannot be accounted for unless the number of (charged) particles belonging to a cluster is sizeable, at least 5 - 10

 p_{\perp}^{max} dependence: data - PHENIX Au+Au @ 200, c = 20 - 25%thermal clusters - red: T = 165 MeV, $ar^* = 2.1$, black: T = 130 MeV (T lowered due to resonance decays !!!), $ar^* = 2.9$

Why soft physics goes to $p_T \sim 2 \text{ GeV}$

top: T = 130 MeV, bottom: T = 165 MeV

Conclusion

- 1. A "combinatoric" attempt
- 2. Constant $\langle M \rangle$ and σ_p in the fiducial centrality range made the calculation easy, otherwise somewhat more involved formulas are needed but the analysis is straightforward. Need more experimental info.
- 3. Appearance of scaling of σ_{dyn}^2 with $1/\langle n \rangle$ (and appropriately in other *equivalent* measures of correlations) suggest the cluster picture of the fireball
- 4. This cluster scaling can be also seen at STAR and at CERES
- 5. Use also $\langle n \rangle$, not N_p only.
- 6. The clusters may a priori originate from very different physics: (mini)jets, droplets of fluid formed in the explosive scenario of the collision, or other mechanisms leading to multiparticle correlations
- 7. The magnitude of the observed σ_{dyn} can be easier achieved when several (4-10 charged) particles are present in a cluster (thermal clusters estimate)
- 8. In the thermal clusters model F_{p_T} grows linearlyly with $p_{\perp}^{\rm max}$ and then saturates around 2 GeV
- 9. More detailed microscopic modelling necessary