Thermal Model for RHIC II: elliptic flow and HBT radii

Wojciech Broniowski + WF + Anna Baran (PhD student) INP, Cracow

Coimbra 2002

The iris of RHIC

Model at $b \neq 0$

Two empirical facts from RHIC:

- 1. $v_2 > 0$ (more particles in the reaction plane)
- 2. $R_{\rm side}$ -measurement: the shape elongated out-of-reaction plane (early freeze-out in conflict with hydro)

Choice of parameterization taking this into account:

$$r_x = \rho \sqrt{1 - \epsilon} \cos \phi$$
 $r_y = \rho \sqrt{1 + \epsilon} \sin \phi$

 r_z , t as for the symmetric case

$$u_x = \frac{1}{N} r_x \sqrt{1 + \delta} \cos \phi$$

$$u_y = \frac{1}{N} r_y \sqrt{1 - \delta} \sin \phi$$

$$u_z = \frac{1}{N} r_z, \quad u_t = \frac{1}{N} t$$

normalization N such that $u^{\mu}u_{\mu}=1$

Azimuthal asymmetry

At $b \neq 0$ asymmetry of shape in the x-y plane

$$\left. \frac{dN}{d^2 p_{\perp} dy} \right|_{y=0} = \left. \frac{dN}{2\pi p_{\perp} dp_{\perp} dy} \right|_{y=0} (1 + \frac{2v_2 \cos 2\phi}{2\pi p_{\perp} dp_{\perp} dy})$$

The elliptic-flow coefficient:

$$v_{2} = \frac{\int_{0}^{2\pi} \frac{dN}{d^{2}p_{\perp}dy} \Big|_{y=0} \cos 2\phi \, d\phi}{\int_{0}^{2\pi} \frac{dN}{d^{2}p_{\perp}dy} \Big|_{y=0} \, d\phi}$$

 $v_2 \neq 0$ is a signature of rescattering effects (final state interactions, flow, ...), since $\sum (p+p)$ symmetric

 v_2 depends on the impact parameter b, p_{\perp} , and the type of particle

Centrality parameter:

$$c \simeq \frac{b^2}{(2R)^2}$$

(for most central collisions c = 0!)

WB+WF, PRC65 (2002) 024905

$\phi\text{-averaged }p_\perp\text{-spectra at }b\neq 0$

Fit, ignoring δ and ϵ (effects are tiny %), at various centralities works as good as at b=0

	PHI		PHENIX @130GeV		PHENIX+STAR
					@130GeV
c [%]	min. bias	0-2	15-30	60-92	9-0/5-0
[fm]	9.6	8.2	6.3	2.3	7.7
$ ho_{ m max}$ [fm]	4.5	6.9	5.3	2.0	2.9
$ ho_{ m max}/ au$	0.81	0.84	0.84	0.87	78.0
$\beta_{\parallel}^{\mathrm{max}}$	0.62	0.64	0.64	99.0	99.0
$ \langle \overline{eta}_{\perp} angle$	0.46	0.47	0.47	0.48	0.48

Summary of v_2

- 1. Elliptic flow can be introduced
- 2. $\epsilon(c)$ can be taken from (future) data
- 3. $\delta(c)$ fitted to the v_2 reasonable values
- 4. Predictions for various particles and the p_{\perp} dependence
- 5. Resonances lower v_2
- 6. How to describe saturation at high p_{\perp} ?

Hanbury Brown–Twiss (HBT) correlation radii

radioastronomy: measuring of correlations of signal intensities \rightarrow angular sizes of radio sources

G. Baym, Acta Phys. Pol. B29 (1998) 1839

nuclear/particle physics: study correlations of identical particles $(\pi^+\pi^+, \pi^-\pi^-, ...)$

$$C(\vec{q}, \vec{P}) = \frac{\{n_{\vec{p}_1} n_{\vec{p}_2}\}}{\{n_{\vec{p}_1}\}\{n_{\vec{p}_2}\}},$$

$$ec{q}=ec{p_2}-ec{p_1}$$
, $ec{P}=ec{p_1}+ec{p_2}$, $\{\ \}$ — over events

Discovering the shape...

coordinates: $\vec{P}||\vec{x}$, out = x, side = y, long = z

$$C(\vec{q}) = 1 + \lambda e^{-\left(q_{\text{out}}^2 R_{\text{out}}^2 + q_{\text{side}}^2 R_{\text{side}}^2 + q_{\text{long}}^2 R_{\text{long}}^2 + 2q_{\text{out}} q_{\text{long}} R_{\text{ol}}^2\right)}$$

with the geometric interpretation:

Bertsch Pratt

$$R_{\text{side}}^2 = \langle y^2 \rangle, \quad R_{\text{out}}^2 = \langle (x - v_x t)^2 \rangle$$

 $R_{\text{long}}^2 = \langle (z - v_z t)^2 \rangle, \quad R_{\text{ol}}^2 = \langle (x - v_x t)(z - v_z t) \rangle$

Model evaluation (with some approximations):

$$C(\vec{q}) = 1 + \frac{\left| \int d\Sigma(x) \cdot u(x) e^{iq \cdot x} S(P \cdot u(x)) \right|^2}{\int d\Sigma \cdot u S((P + \frac{q}{2}) \cdot u(x)) \int d\Sigma \cdot u S((P - \frac{q}{2}) \cdot u(x))}$$

where the source function is

$$S(p \cdot u) = \frac{1}{(2\pi)^3} e^{-(p \cdot u - \mu)/T} + \text{contr. from resonances}$$

hydro/QGP: $R_{\rm out}/R_{\rm side} > 1$ (significantly) experiment:

- ullet R's of the order of target size
- $R_{\rm out}/R_{\rm side} \simeq 1$

MOST SURPRISINGLY, independent of the collision energy!

$$J/\psi$$

Prediction from the thermal model:

$$\frac{J/\psi}{\pi^{-}} = 0.12^{+0.16}_{-0.07} \times 10^{-6}$$

for
$$T = 165^{+7}_{-7} \text{ MeV}$$

(somewhat lower than the estimate of Bugajev, Gaździcki, and Gorenstein, who use higher T)

WB+WF, PRC 65 (2002) 064905

Geometry at various energies

Most central collisions (errors not estimated)

	NA44	PHENIX	PHENIX	PHENIX	BRAHMS
$\sqrt{s_{NN}}$ [GeV]	17	130	+STAR 130	200	200
c [%]	$0-5^{*}$	0-2	0-2/0-6	0-2	10
τ [fm]	8.0	8.2	7.7	7.2	7.5
$ ho_{ m max}$ [fm]	5.9	6.9	6.7	7.9	7.7
$ ho_{ m max}/ au$	0.73	0.84	0.87	06.0	0.97
$\beta_{\perp}^{\mathrm{max}}$	0.59	0.64	99.0	29.0	0.70
$\langle \overline{\beta}_{\perp} \rangle$	0.43	0.47	0.48	0.50	0.52

week dependence of parameters, slight increase of the flow velocity on $\sqrt{s_{NN}}$

Successes

- 1. The thermal model works for the particle ratios
- 2. Supplied with expansion, it works for the p_{\perp} -spectra
- 3. Supplied with elliptic flow, describes identified v_2
- 4. Supplied with the excluded-volume corrections, works for the HBT radii
- 5. Description efficient, few parameters with clear interpretation
- 6. Works also very well for the hadrons containing strange quarks $(\phi, \Lambda, \Xi, \Omega, ...)!$
- 7. Universal freeze-out approximation supported by data $(K^*$'s, ϕ , ρ ?
- 8. Early freeze-out (HBT, $R_{\mathrm{side}}(\phi)$)
- 9. Model also works for the RHIC @ 200 GeV A as well as for SPS @ 17 GeV A

Questions to the model and beyond

- 1. Why should the simple $e^{-(E-\mu)/T}$ work? Kinetic arguments indicate there is no time to achieve thermal equilibrium in the gas of hadrons (early freeze-out)
- 2. Is this the property of hadronization?
- 3. Questions to prehistoric (*i.e.* pre-freeze-out) times: *Was there quark-gluon plasma?* If yes, why the transverse size does not grow with the collision energy?
- 4. How to construct a (microscopic) model for early stages such that the conditions at freeze-out which we use are reached?