Transversity structure of the pion in chiral quark models

Wojciech Broniowski

Jan Kochanowski University, Kielce Institute of Nuclear Physics PAN, Cracow

with E. Ruiz Arriola and A. E. Dorokhov

Mini-Workshop Bled 2011: Understanding Hadronic Spectra

Bled (Slovenia), 3-10 July 2011

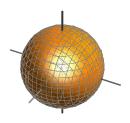
Details in

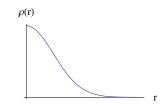
Transversity form factors of the pion in chiral quark models
 WB, Alexander E. Dorokhov, Enrique Ruiz Arriola,
 PRD 82 (2010) 094001, arXiv:1007.4960 [hep-ph]

Outline

- Introduction
 - Definitions
 - Motivation
 - Exclusive processes
- 2 Chiral quark models
 - Glossary of quark-model results
 - Instant-form pion wave function
 - QCD evolution of generalized form factors
- Results
 - Transversity form factors
 - Transversity GPDs
 - Meson dominance

Distribution of charge

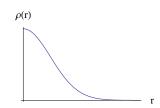




$$Q = \int d^3r \rho(r),$$

$$Q = \int d^3 r \rho(r), \qquad F(q^2) = \frac{1}{Q} \int d^3 r e^{-i\vec{q}\cdot\vec{r}} \rho(r)$$

Distribution of charge



$$Q = \int d^3r \rho(r), \qquad F(q^2) = \frac{1}{Q} \int d^3r e^{-i\vec{q}\cdot\vec{r}} \rho(r)$$

$$= \frac{1}{Q} \int d^3r \, \rho(r) [1 - i\vec{q}\cdot\vec{r} - \frac{1}{2}(\vec{q}\cdot\vec{r})^2 + \dots] = 1 - \frac{q^2}{6Q} \int d^3r \, r^2 \rho(r) + \dots$$

$$\langle r^2 \rangle = -6 \frac{d}{dq^2} F(q^2)$$

Definition of transversity form factors

FF related to the transversity Generalized Parton Distribution (maximum-helicity GPD, related to spin distributions)

$$\langle \pi^{+}(p')|\mathcal{O}_{T}^{\mu\nu\mu_{1}\cdots\mu_{n-1}}|\pi^{+}(p)\rangle = \mathcal{A}\mathcal{S}\,\bar{p}^{\mu}\Delta^{\nu}\sum_{\substack{i=0\\\text{even}}}^{n-1}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\bar{p}^{\mu_{i+1}}\cdots\bar{p}^{\mu_{n-1}}\frac{B_{Tni}^{\pi,u}(t)}{m_{\pi}}$$

 $\bar{p}=\frac{1}{2}(p'+p),~\Delta=p'-p,~t=\Delta^2,~\mathcal{AS}$ – symmetrization in $\nu,\ldots,\mu_{n-1},$ followed by antisymmetrization in $\mu,\nu,$ traces in all index pairs are subtracted.

$$\mathcal{O}_T^{\mu\nu\mu_1\cdots\mu_{n-1}} = \mathcal{AS}\; \overline{u}(0)\, i\sigma^{\mu\nu} i\overset{\leftrightarrow}{D}{}^{\mu_1}\dots i\overset{\leftrightarrow}{D}{}^{\mu_{n-1}} u(0)$$

Definition of transversity form factors

FF related to the transversity Generalized Parton Distribution (maximum-helicity GPD, related to spin distributions)

$$\langle \pi^{+}(p')|\mathcal{O}_{T}^{\mu\nu\mu_{1}\cdots\mu_{n-1}}|\pi^{+}(p)\rangle = \mathcal{A}\mathcal{S}\,\bar{p}^{\mu}\Delta^{\nu}\sum_{\substack{i=0\\\text{even}}}^{n-1}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\bar{p}^{\mu_{i+1}}\cdots\bar{p}^{\mu_{n-1}}\frac{B_{Tni}^{\pi,u}(t)}{m_{\pi}}$$

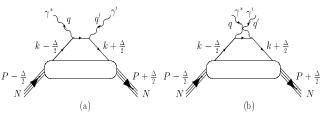
 $\bar{p}=rac{1}{2}(p'+p),~\Delta=p'-p,~t=\Delta^2,~\mathcal{AS}$ – symmetrization in ν,\ldots,μ_{n-1} , followed by antisymmetrization in μ,ν , traces in all index pairs are subtracted.

$$\mathcal{O}_T^{\mu\nu\mu_1\cdots\mu_{n-1}} = \mathcal{AS}\; \overline{u}(0)\, i\sigma^{\mu\nu} i\overset{\leftrightarrow}{D}{}^{\mu_1}\dots i\overset{\leftrightarrow}{D}{}^{\mu_{n-1}} u(0)$$

$$\langle \pi^{+}(p')|\overline{u}(0)\sigma^{\mu\nu}u(0)|\pi^{+}(p)\rangle = \mathcal{AS}\ \bar{p}^{\mu}\Delta^{\nu}\frac{B_{\pi,u}^{\pi,u}(t)}{m_{\pi}}$$

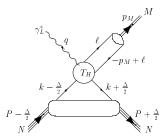
$$\mathcal{AS} \langle \pi^{+}(p') | \overline{u}(0) \sigma^{\mu\nu} \overset{\leftrightarrow}{D}{}^{\mu_{1}} u(0) | \pi^{+}(p) \rangle = \mathcal{AS} \ \overline{p}^{\mu} \Delta^{\nu} \overline{p}^{\mu_{1}} \frac{B_{T20}^{\pi, u}(t)}{m_{\pi}}$$

Exclusive processes in QCD



Deeply Virtual Compton Scattering

non-zero momentum transfer to the target, at least one photon virtual

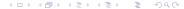


Hard Meson Production

Dictionary of matrix elements

General structure of the soft matrix elements: $\langle A \mid \mathcal{O} \mid B \rangle$

- A = B = one-particle state Parton Distribution of A (inclusive DIS)
- A = one-particle state, B = vacuum distribution amplitude (DA) of A (hadronic form factors, HMP)
- A, B = one-particle state of different momentum GPD (exclusive DIS, DVCS, HMP)
- A = many-particle state, B = vacuum GDA (transition form factors)
- A \neq B (A, B different hadronic states) Transition Distribution Amplitude ($h\bar{h} \to \gamma \gamma^*$, Pire & Szymanowski 2004)
- •

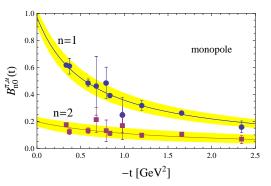


Lattice results

Many results which come from lattices, especially for the **pion**, will not be accessible in physical experiments. We want to compute them!

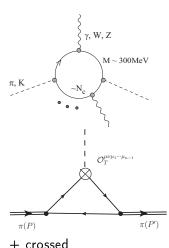
Motivation: QCDSF data

[data from D. Brommel et al. (QCDSF), PRL 101 (2008) 122001]



Monopole fit: $m_1=760\pm 50$ MeV (ρ), $m_2=1120\pm 250$ MeV (f_2) (meson dominance)

Basic idea of chiral quark models



- ullet one-quark-loop, large N_c
- covariant Lagrangian calculation
- soft regime → chiral symmetry breaking
- NJL, local and nonlocal, instanton-motivated
- few parameters (traded for f_{π} , m_{π} , ...)
- ullet numerous processes with pions, γ , ...
- no confinement careful not to open the $q\overline{q}$ threshold
- quark model scale low need for QCD evolution to higher scales

approach = model + QCD evolution

Evolution generates gluons and the sea quarks as the scale is increased

$$approach = model + QCD evolution$$

Evolution generates gluons and the sea quarks as the scale is increased

All features satisfied: support, polynomiality, positivity, charge and momentum sum rules, Callan-Gross $(F_2=2xF_1),\ldots)$

approach = model + QCD evolution

Evolution generates gluons and the sea quarks as the scale is increased

All features satisfied: support, polynomiality, positivity, charge and momentum sum rules, Callan-Gross $(F_2=2xF_1),\ldots)$

Next: glossary of our old results showing that the approach is reasonable for computing soft matrix elements appearing in high-energy experiments and lattices

Parton Distribution Function of the pion

NJL gives the constant valence PDF [Davidson, Arriola, 1995]:

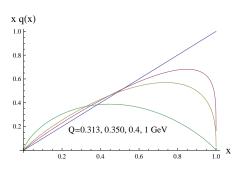
$$q(x) = 1$$

Parton Distribution Function of the pion

NJL gives the constant valence PDF [Davidson, Arriola, 1995]:

$$q(x) = 1$$

LO DGLAP QCD evolution (good at intermediate x) to higher scales

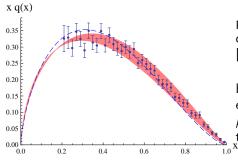


constant PDF of the also pion follows from AdS/CFT models [Brodsky, Teramond 2008]

→ BaBar pion-photon transition form factor

The question of renormalization scale: momentum sum-rule \rightarrow $\mu_0 \sim 320$ MeV \rightarrow at 2 GeV valence quarks carry 47% of the momentum (Durham), $\alpha(\mu_0)/\pi=0.68$

Valence PDF from NJL vs E615



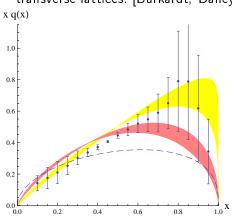
points: Drell-Yan from E615 dashed: reanalysis of the data [Wijesooriya et al., 2005]

band: valence PDF from NJL evolved from the QM scale $\mu_0=313^{+20}_{-10}$ MeV to $\mu=2$ GeV of the experiment $^{\rm X}$

(last year's analysis of Aicher, Schafer, and Vogelsang, including the soft gluon resummation, moves the strength to lower x)

Valence PDF from NJL vs. transverse lattice

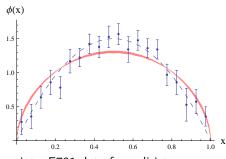
transverse lattices: [Burkardt, Dalley, Van de Sande]



points: transverse lattice [Dalley, Van de Sande, 2003] yellow: NJL evolved to $\mu=0.35~{\rm GeV}$ pink: NJL evolved to $\mu=0.5~{\rm GeV}$ dashed: GRS parametrization at

 $\mu=0.5~{\rm GeV}$

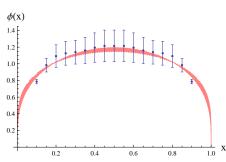
PDA from NJL vs. E791 and lattice data



points: E791 data from di-jet production in $\pi + A$ band: NJL evolved to $\mu=2$ GeV

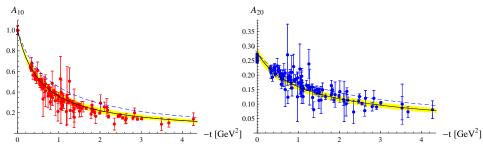
dashed line: asymptotic form

 $(\mu \to \infty)$



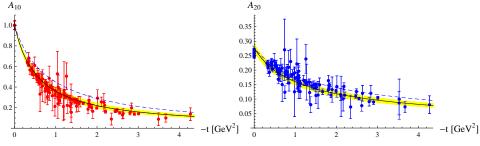
points: transverse lattice data [Dalley, Van de Sande, 2003] band: NJL evolved to $\mu = 0.5$ GeV

Gravitational form factors



Pion charge ff (left) and the quark part of the spin-2 gravitational ff (right) in SQM (solid line) and NJL (dashed line) [WB, ERA 2008], compared to the data [Brömmel et al., 2005-7]

Gravitational form factors



Pion charge ff (left) and the quark part of the spin-2 gravitational ff (right) in SQM (solid line) and NJL (dashed line) [WB, ERA 2008], compared to the data [Brömmel et al., 2005-7]

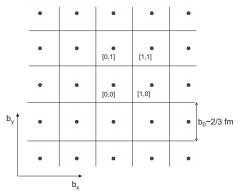
Quark-model relation: $\langle r^2
angle_{\Theta} = rac{1}{2} \langle r^2
angle_{V}$

Matter more concentrated than charge!

(later also found in soft-wall AdS/CFT by Brodsky and Teramond)

Forward ($\xi = 0$) GPDs and transverse lattices

WB and ERA, Impact parameter dependence of the generalized parton distribution of the pion in chiral quark models, PLB 574 (2003) 57] data from S. Dalley, PLB570 (2003) 191

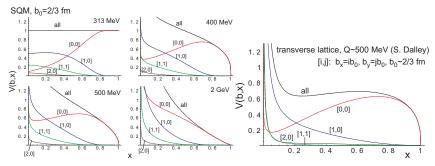


b conjugate to momentum Δ , labeling of lattice plaquettes

Forward GPD of the pion in NJL vs lattice

model

lattice data

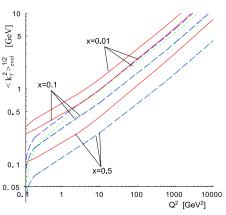


fair agreement for scales $\mu \sim 400$ MeV

TMD

$\mathsf{TMD} = k_T$ -unintegrated PDF

[Kwiecinski 2002; Gawron, Kwiecinski, WB, 2003; ERA, WB, 2004]

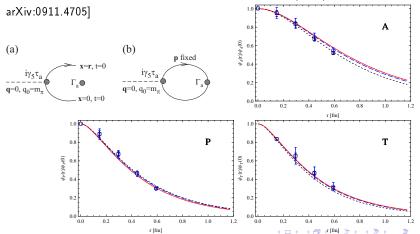


solid - valence dotted - sea dashed - gluons

Pion wave function

[Pion wave function from lattice QCD vs. chiral quark models,

WB, S. Prelovsek, L. Santelj, E. Ruiz Arriola, PLB 686 (2010) 313,



Glossary of quark-model results Instant-form pion wave function QCD evolution of generalized form factors

...back to transversity form factors

Evolution of transversity GFFs

[WB, ERA, PRD 79 (2009) 057501] \rightarrow LO DGLAP-ERBL evolution of GFFs

$$\gamma_n^T = -2C_F \left(3 - 4 \sum_{1}^{n} \frac{1}{k} \right), \quad L_n = \left(\frac{\alpha(\mu)}{\alpha(\mu_0)} \right)^{\gamma_n^T/(2\beta_0)}
B_{T10}(t; \mu) = L_1 B_{T10}(t; \mu_0)
B_{T20}(t; \mu) = L_2 B_{T20}(t; \mu_0)
B_{T30}(t; \mu) = L_3 B_{T30}(t; \mu_0)
B_{T32}(t; \mu) = \frac{1}{5} (L_1 - L_3) B_{T30}(t; \mu_0) + L_3 B_{T32}(t; \mu_0)$$

Multiplicative evolution for B_{Tn0} , absolute predictions for FF at the origin

Evolution of transversity GFFs

[WB, ERA, PRD 79 (2009) 057501] ightarrow LO DGLAP-ERBL evolution of GFFs

$$\gamma_n^T = -2C_F \left(3 - 4 \sum_{1}^{n} \frac{1}{k} \right), \quad L_n = \left(\frac{\alpha(\mu)}{\alpha(\mu_0)} \right)^{\gamma_n^T/(2\beta_0)}
B_{T10}(t; \mu) = L_1 B_{T10}(t; \mu_0)
B_{T20}(t; \mu) = L_2 B_{T20}(t; \mu_0)
B_{T30}(t; \mu) = L_3 B_{T30}(t; \mu_0)
B_{T32}(t; \mu) = \frac{1}{5} (L_1 - L_3) B_{T30}(t; \mu_0) + L_3 B_{T32}(t; \mu_0)$$

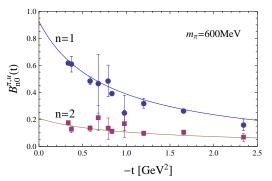
Multiplicative evolution for B_{Tn0} , absolute predictions for FF at the origin

$$\gamma_1^T = \frac{8}{3}, \quad \gamma_2^T = 8$$

$$B_{T10}(t; 2 \text{ GeV}) = 0.75 B_{T10}(t; 313 \text{ MeV})$$

$$B_{T20}(t; 2 \text{ GeV}) = 0.43 B_{T20}(t; 313 \text{ MeV})$$

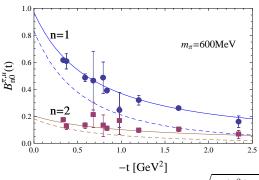
B_{T10} and B_{T20} in NJL



NJL, M=250 MeV $m_\pi=600$ MeV, evolved to the lattice scale of 2 GeV [data from Brommel et al.]

• correct fall-off and central values

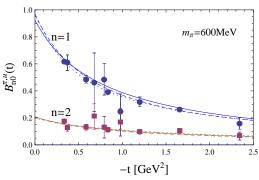
Transversity GFFs in nonlocal models



dashed – instanton-based model, $F=\sqrt{M(k_+^2)M(k_-^2)}$ solid – Holdom-Terning-Verbeek (HTV), $F=\frac{1}{2}\left(M(k_+^2)+M(k_-^2)\right)$ [PLB 245 (1990) 612]

• HTV in better agreement

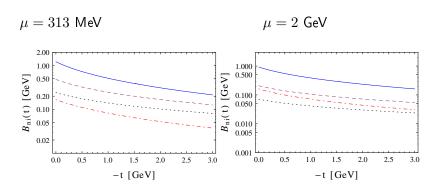
HTV vs NJL



solid - local NJL dashed - HTV

• HTV very close to local NJL

Higher form factors



solid: $B_{T10}^{\pi,u}$, dashed: $B_{T20}^{\pi,u}$, dotted: $B_{T30}^{\pi,u}$, dot-dash: $B_{T32}^{\pi,u}$

• Can be measured on the lattice

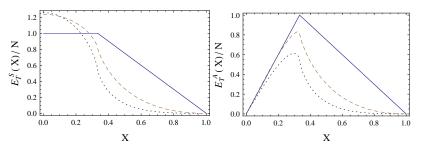
Transversity GPD

Full GPDs

GPD = infinite collections of generalized form factors

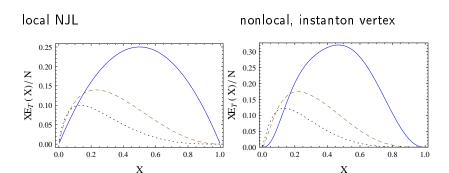
$$\int_{-1}^{1} dX \, X^{n-1} E_{T}^{\pi} \left(x, \xi, t \right) = \sum_{\substack{i=0, \text{even}}}^{n-1} (2\xi)^{i} \, B_{Tni}^{\pi} \left(t \right)$$

Evolution of transversity GPDs, $\xi = 1/3$, t = 0



local NJL, t=0, $\xi=1/3$, $\mu=313$ MeV, 2 GeV, 1 TeV

Same for $\xi = 0$



local NJL vs nonlocal instanton, $t=0,\ \xi=0,\ \mu=313$ MeV, 2 GeV, 1 TeV

different end-point behavior, related to the non-locality

Meson dominance of form factors

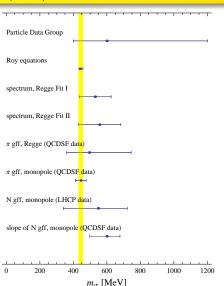
```
charge pion ff — m_{\rho} gravitational pion ff — m_{f_2(1270)} (spin 2), m_{\sigma} (spin 0) B_{T10}^{\pi} — m_{\rho} B_{T20}^{\pi} — m_{f_2(1270)}
```

Monopole fit to the lattice data:

$$M_1 = 760(50) \text{ MeV}, \quad B_{T10}^\pi(t=0) = 0.97(6) \ M_2 = 1120(250) \text{ MeV}, \ B_{T20}^\pi(t=0) = 0.20(3)$$

 Values at the origin are model predictions, QCD evolution necessary Meson dominance seems to be working very well in all channels!

$\sigma(600)$ compilation



[ERA, WB, PRD 81 (2010) 054009]

results consistent with the Bern and Madrid analyses (Roy equations)

Summary

- "Model + evolution"
- GPDs in various channels are collections of generalized form factors
- Computed on the lattice
- Chiral quark models compare nicely to lattice results, link between the high- and low-energy analyses
- The QCD evolution is necessary, the quark-model scale μ_0 is low, ~ 320 MeV (no gluons)
- ullet B_{Tn0} evolve multiplicatively, absolute predictions
- NJL works → chiral symmetry breaking is the key dynamical factor for soft physics
- Lattice form factors give the meson masses pretty accurately! Meson dominance works remarkably well for the vector, 2 gravitational, and 2 transversity ff (it also works in the nucleon channel)
- → constituent quark hadron duality
- "All" works!

