Baryon inside the pion

Wojciech Broniowski

7 December 2022

Based on Pablo Sanchez-Puertas, Enrique Ruiz Arrriola, WB PLB 822 (2021) 136680 [arXiv:2103.09131] PRD 106 (2022) 036001 [arXiv:2112.11049]

2018/31/B/ST2/01022 National Science Centre

Some basics of form factors

Concept of the form factor

Elastic scattering cross section on a point-like vs. extended object e.g., the Ratherford or Mott $(eX \rightarrow eX)$ scattering

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\text{point-like}}} |F(\vec{q}^{\,2})|^2$$

momentum transfer $\vec{q} = \vec{p}_f - \vec{p}_i$.

Information on the spatial distribution of scatterers (charge) $\rho(r)$ in the target:

Form factor

$$F(\vec{q}^{\,2}) = \int d^3r \, e^{i\vec{q}\cdot\vec{r}}\rho(r) = \int d^3r \, j_0(|\vec{q}|)\rho(r)$$

At low q we have $F(\vec{q}^{\,2}) = \int d^3r \,\rho(r) - \frac{1}{6}\vec{q}^{\,2} \int d^3r \,r^2\rho(r) + \cdots =$ "charge" $-\frac{1}{6}\vec{q}^{\,2} \,\mathrm{msr}$

electric magnetic strangeness ... mass (gravitational) ... composite operators ... hadronic

scattering amplitude = \sum tensorial structure × form factor (scalar function) Extracted from scattering data and lattice QCD

Relativistic kinematics

$$q = p_f - p_i, \quad t = q^2 = q_0^2 - \vec{q}^2 = -Q^2, \quad p_i^2 = p_f^2 = m^2$$

 $F = F(t)$

"Charge"		
	F(0)	

Mean squared radius

$$\langle r^2 \rangle = \left. 6 \frac{dF(t)}{dt} \right|_{t=0}$$

Transverse density

$$\rho(b) = \int \frac{d^2 q_\perp}{(2\pi)^2} e^{-i\vec{q}_\perp \cdot \vec{b}} F(-\vec{q}_\perp^2)$$

Field theoretic definition

On-shell matrix element of an operator at x = 0

Example: electromagnetic form factor of a (pseudo) scalar particle

$$\langle h(p)|J^{\mu}(0)|h(p+q)\rangle = (2p^{\mu}+q^{\mu})F(q^2)$$

conserved: $\partial_{\mu}J^{\mu} = 0 \rightarrow \text{Ward-Takahashi identities}$

$$\rightarrow q_{\mu}(2p^{\mu}+q^{\mu})=(p+q)^2-p^2=m^2-m^2=0$$

Pion EM form factor

Vector meson dominance model fits the data well

WB

JK 7/34

Baryon in the pion?

Neutron charge ff

Recall that the neutron, which has no electric charge, has a non zero ff for $q^2 \neq 0$:

unpolarized elastic *ed* scat. [Obrecht 2019] < ≧ ▷ < ≧ ▷ ≧ ∽ <

Neutron charge radius

[Atac et al. 2021]

Strangeness in the nucleon

Another example: strange ff's of the nucleon, $G^s_{E,M}$

[Jaffe 1989, Musolf, Burkardt 1993, Forkel, Cohen, Forkel, Nielsen 1993,...]

Alexandrou et. al (ETM Coll.) 2020

Symmetries and the baryon ff of the pion

Divergence of vector currents in QCD

$$\partial_{\mu} \left[\bar{q}_a(x) \gamma^{\mu} q_b(x) \right] = i(m_a - m_b) \bar{q}_a(x) q_b(x), \qquad a, b = u, d, s, c, b, t \quad \text{-flavor}$$

 $m_a=m_b
ightarrow$ conservation of vector currents, quark number of any species conserved

Gell-Mann–Nishijima formula

$$Q = I_3 + \frac{1}{2}(B + s + c + b + t)$$

For the pion heavier flavors can be neglected (OZI, large- N_c):

$$J_{B}^{\mu} = \frac{1}{N_{c}} \left(\bar{u} \gamma^{\mu} u + \bar{d} \gamma^{\mu} d \right), \quad J_{3}^{\mu} = \frac{1}{2} \left(\bar{u} \gamma^{\mu} u - \bar{d} \gamma^{\mu} d \right), \quad J_{Q}^{\mu} = J_{3}^{\mu} + \frac{1}{2} J_{B}^{\mu} \quad (\text{all conserved})$$

Baryon, isospin, and charge form factors

$$\langle \pi^a(p) \mid J^{\mu}_{B,3,Q}(0) \mid \pi^a(p+q) \rangle = (2p^{\mu} + q^{\mu})F^a_{B,3,Q}(q^2), \quad a = 0, +, - \text{ (pion isospin)}$$

$$\pi^0: \ I^G(J^{PC}) = 1^-(0^{-+}), \qquad \pi^{\pm}: \ I^G(J^P) = 1^-(0^-), \qquad C |\pi^{\pm}\rangle = |\pi^{\mp}\rangle, \qquad G = C e^{i\pi I_2}$$

$J^{\mu}_{B,3,Q}$ are **odd** under $C \rightarrow$

 $F_{B,3,Q}^{\pi^0}(q^2)=0 \text{ and } F_{B,3,Q}^{\pi^+}(q^2)=-F_{B,3,Q}^{\pi^-}(q^2) \quad -\text{ always true!}$

 $\text{e.g., } \langle \pi^0(p) | J^{\mu}_B(0) | \pi^0(p+q) \rangle = - \langle \pi^0(p) | C J^{\mu}_B(0) C | \pi^0(p+q) \rangle = - \langle \pi^0(p) | J^{\mu}_B(0) | \pi^0(p+q) \rangle = 0$

 $\text{ or } \langle \pi^+(p)|J^{\mu}_B(0)|\pi^+(p+q)\rangle = -\langle \pi^+(p)|CJ^{\mu}_B(0)C|\pi^+(p+q)\rangle = -\langle \pi^-(p)|J^{\mu}_B(0)|\pi^-(p+q)\rangle$

▶ 米温 ▶ 米温 ▶ 二温

Similarly, for exact isospin (and G) symmetry (assuming $m_u = m_d$ and neglecting small EM effects)

 J^{μ}_{B} is **odd** under $G \rightarrow$

$$F_B^{\pi^\pm}(q^2)=0$$
 $\left(F_3^{\pi^\pm}(q^2)
eq 0$, as J_3^μ is even under $G
ight)$

However, in the real world the isospin (and G) are broken (a.k.a. charge symmetry breaking) with $m_d > m_u$ and EM

$$F_B^{\pi^\pm}(q^2)$$
 may be (and is) nonzero, with $F_B^{\pi^+}(q^2) = -F_B^{\pi^-}(q^2)$

As the baryon charge of the pion is 0, we have

$$F_B^{\pi^{\pm}}(0) = 0$$
 (but not at $q^2 \neq 0$)

On the other hand, $F_3^{\pi^{\pm}}(0) = \pm 1$ (the 3-component of isospin)

- As a rule, if a quantity is not protected by symmetry, hence may be nonzero, it is nonzero
- There is the question of magnitude, proportional to the strength of the symmetry breaking
- No probes with baryon number couple directly to the pion (except for lattice QCD) \rightarrow we need indirect methods to estimate the effect

Mass splitting

 $\Delta m \equiv m_d - m_u = 2.8(2) \text{MeV} (m_u = 2.01(14) \text{MeV}, m_d = 4.79(16) \text{MeV}$ [Davies et al. 2009])

• EM violating effects more tricky to estimate/evaluate, of the order $lpha_{\rm QED}/(2\pi)\sim 0.001$

Effective Lagrangian estimate

▲□▶▲□▶▲□▶▲□▶ = ののの

At leading order in the pion momenta and the quark mass splitting

$$J_B^{\mu} = -2i \frac{c\Delta m}{\Lambda^3} \partial_{\nu} \left(\partial^{\mu} \pi^+ \partial^{\nu} \pi^- - \partial^{\nu} \pi^+ \partial^{\mu} \pi^- \right) + \dots$$

c – dimensionless number, Λ – typical hadronic scale

 J^{μ}_{B} is odd under C, trivially conserved, and yields $F^{\pi^{+}}_{B}(q^{2})=q^{2}c\Delta m/\Lambda^{3}+\dots$

Baryonic ms radius

$$\langle r^2 \rangle_B^{\pi^+} = 6c \Delta m / m_{\rho}^3 \simeq c \ 0.002 \text{fm}^2 \simeq c (0.04 \text{fm})^2$$

– small compared to the charge radius $\langle r^2\rangle_Q^{\pi^+}=0.434(5){\rm fm}^2=(0.659(4){\rm fm})^2$

Quark-model estimates

Yukawa model (impulse approximation)

Baryon ff

$$F_B^{\pi^+}(-Q^2) = \frac{1}{N_c} \left[\frac{4M_u^2}{4M_u^2 + Q^2} - \frac{4M_d^2}{4M_d^2 + Q^2} \right] \simeq -\frac{4\Delta m \, m_\rho Q^2}{3(m_\rho^2 + Q^2)^2}$$

Yukawa model 2

$$\langle r^2 \rangle_B^{\pi^+} \simeq \frac{8\Delta m}{m_\rho^3} \simeq (0.04 \text{ fm})^2$$

Mechanistic explanation

 \overline{d} is a bit heavier than u, hence its distribution is somewhat more compact.

 $\pi^+ = u\bar{d}$, u - baryon charge (matter), \bar{d} - antibaryon charge (antimatter)

Mechanistic explanation

 \overline{d} is a bit heavier than u, hence its distribution is somewhat more compact.

Nambu–Jona-Lasinio (NJL) model

Covariant field-theoretic model. Dynamical chiral symmetry breaking, point-like interaction, large- N_c (one-loop), regularization. Generally very successful in pion low-energy phenomenology

NJL: $\langle r^2 \rangle_B^{\pi^+} \simeq (0.06 \text{ fm})^2$

Determination from exp. data (!)

$$e^+e^- \rightarrow \pi^+\pi^-$$

Long tradition of $e^+e^- \rightarrow \pi^+\pi^-$ measurements $J_Q^{\mu} = J_3^{\mu} + \frac{1}{2}J_B^{\mu}$ π e^+ 100 $F_O^{\pi^{\pm}} = F_3^{\pi^{\pm}} + \frac{1}{2}F_B^{\pi^{\pm}}$ BaBar π^{-} KLOE 10 $|F_Q(s)|^2$ 0.10 Arrow indicates a wiggle due to $F_B^{\pi^{\pm}} \neq 0!$ 0.01 0.5 1.0 1.5 2.0 2.5 3.0 √s [GeV]

(relevant for hadronic vacuum polarization in g-2)

Vector meson dominance

[Gounaris-Sakurai 1968, largely used by exp. groups]

Our fit to KLOE and BaBar

 \ldots shown in the relevant range of \boldsymbol{s}

Necessity of $F_B^{\pi^{\pm}} \neq 0$ (or $\rho - \omega$ mixing) Unresolved disrepancy between KLOE and BaBar!

Continuation space-like Q^2 with the dispersion relation

$$e^+e^- \rightarrow \pi^+\pi^-$$
:
BaBar: $\langle r^2 \rangle_B^{\pi^+} \simeq (0.0411(7) \text{ fm})^2$, KLOE: $\langle r^2 \rangle_B^{\pi^+} \simeq (0.0412(12) \text{ fm})^2$ (stat. errors only)

approach	$\langle r^2 \rangle_B^{\pi^+}$	comment
effective Lagrangian	$c(0.04 \text{ fm})^2$	c - number of order 1
toy Yukawa model	$(0.04 \text{ fm})^2$	
NJL	$(0.06 \text{ fm})^2$	
BaBar	$(0.041(1) \text{ fm})^2$	exp. statistical error only
KLOE	$(0.041(1) \text{ fm})^2$	

- Agreement between very different methods
- BaBar and KLOE extractions incorporate both Δm and EM breaking (but EM canceled from the initial and final state interactions)

Baryon in the kaon

Kaon in NJL

Full analogy to π^+ : for $K^+ = u\bar{s}$ replace $d \to s$, for $K^0 = d\bar{s}$ replace $u \to d$ and $d \to s$ NJL: $m_s/m = 26$ (fits m_K), PDG: $m_s/m = 27.3^{+0.7}_{-1.3}$

(for π^+ , K^0 , K+, correspondingly, $\Delta = M_d - M_u$, $\Delta = M_s - M_d$, $\Delta = M_s - M_u$)

WB

NJL:

$$\langle r^2 \rangle_B^{K^+} = (0.24(1) \text{ fm})^2, \quad \langle r^2 \rangle_B^{K^0} = (0.23(1) \text{ fm})^2$$

In NJL, $\langle r^2 \rangle_B^{K^0} = - \langle r^2 \rangle_Q^{K^0}$, since the baryon number and electric charge of d and \bar{s} quarks are equal and opposite

PDG:

 $\langle r^2
angle^{K^0}_Q = -(0.28(2)~{
m fm})^2$, of the same sign and close in magnitude to NJL

Within the reach of the lattice

Conclusions

Outlook

- **9** Fundamental feature of the pion, eventually should end up in the PDG Tables
- Small, but as shown, possible to extract from the present experimental data could be elevated to strict determination after some experimental and theoretical systematic issues are resolved
- Settimates from very different approaches yield $\langle r^2 \rangle_B^{\pi^+} = (0.03 0.06 \text{ fm})^2$, the sign agrees with the mechanistic interpretation
- Lattice QCD: $\langle r^2 \rangle_Q^{\pi} = (0.648(15) \text{ fm})^2 = 0.42(2) \text{ fm}^2$ our signal for the baryon ff is a factor of ~ 10 too small (0.002 vs the accuracy of 0.02) to be currently detected (but still could be tried)
- Sood lattice prospects for the kaon or heavy-light mesons

THANKS FOR YOUR ATTENTION!