
Partial correlation analysis
in ultra-relativistic nuclear collisions

Wojciech Broniowski

Jan Kochanowski U. & IFJ PAN
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Outline

Partial correlations (PC) analysis, physical and control random
variables (meaning of centrality)

PC in a superposition approach – placing constraints on sources

Extracting correlation measures of the initial stage

Test on a hydro solution: a working scheme
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Partial correlations



Kindergarden

Sample of children:

1 weight

2 intelligence

Pearson’s correlation matrix:

ρ =

(
1 0.62

0.62 1

)
→ ρ(weight, intelligence) ' 0.6 – large

Hints to wrong conclusions

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Kindergarden

Sample of children:

1 weight

2 intelligence

3 age – control (external, nuisance) variable

Pearson’s correlation matrix:

ρ =

 1 0.62 0.84
0.62 1 0.74
0.84 0.74 1


→ ρ(weight, intelligence) ' 0.6 – large

Partial correlation (defined shortly) gives ρ(weight, intelligence • age) ' 0

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Definition of partial covariance

n physical variables X = (X1, . . . , Xn), m control variables Z = (Z1, . . . , Zm)

Xi, Zj are vectors in the space of events, i.e., X1 = (X
(1)
1 , X

(2)
1 . . . X

(Nev)
1 )

〈O〉 ≡ 1
Nev

∑Nev

k=1O(k)

Partial covariance:

c(X,X • Z) ≡ c(X,X)− c(X,Z)c−1(Z,Z)c(Z,X)

where c(A,B) is the usual covariance c(Ai, Bj) = 〈AiBj〉 − 〈Ai〉〈Bj〉.
Diagonalizing c(Z,Z) (orthonormal eigenvectors Uk) yields

c (Xi, Xj • Z) = c(Xi, Xj)−
m∑
k=1

c(Xi, Uk)c(Uk, Xj)

= c (Xi − c(Xi, Uk)Uk, Xj − c(Xj , Uk′)Uk′)

Components of X belonging to the space spanned by Z are projected out

[H. Cramer, Mathematical methods of statistics, Princeton U. Press, 1946]
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Partial correlation
Two physical variables X,Y and one control variable Z:

c(X,Y • Z) = c(X,Y )− c(X,Z)c(Z, Y )

v(Z)

Pearson’s-like partial correlation coefficient is

ρ(X,Y • Z) =
c(X,Y • Z)√

c(X,X • Z)c(Y, Y • Z)
=

ρ(X,Y )− ρ(X,Z)ρ(Z, Y )√
1− ρ(X,Z)2

√
1− ρ(Z, Y )2

One often uses the correlation = covariance scaled with the multiplicities:

C(X,Y ) =
c(X,Y )

〈X〉〈Y 〉
, V(X) ≡ c(X,X) =

v(X)

〈X〉2

Then

C(X,Y • Z) = C(X,Y )− C(X,Z)C(Z, Y )

V(Z)

W. Broniowski Partial correlations Zimányi 2017 6 / 27



Example: Coulomb explosion of N2 molecule at FEL

a correlated product

b uncorrelated product

c covariance map

d spurious correlations

e partial covariance

f + corrections

L. J. Frasinski, 2016]
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Relation to conditional covariance

c(Xi, Xj |Z) - evaluate at fixed Z and then average over Z

[Lawrance 1976]: if a sample satisfies E (X|Z) = α+ BZ,
with α a constant and B a constant matrix ⇒

c(Xi, Xj • Z) = c(Xi, Xj |Z)

⇐ shown by [Baba et al. 2005]

Application of conditinal covariance by [STAR 2008], where Z is hadron
multiplicity in the reference bin R:

1 Divide R into very narrow subsamples (centrality classes) according to Z

2 Evaluate the covariance between Xi and Xj in each subsample

3 Average obtained covariances over the subsamples
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Graphical proof
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Superposition model



Superposition model

B

initial dynamics

hydro-
dynamics

statistical 
hadronization

 

density of fluid

N-final hadrons

C F

    initial partons

S-initial sources

overlaid distribution of partons

deterministic, no mixing
weak longitudinal push (∼ 20%)

overlaid distribution of hadrons

overlaid detector efficiency
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Superposition model (cont.)

NA =

SA∑
i=1

mi, A = F,B,C

〈NA〉 = 〈SA〉〈m〉
v(NA) = 〈m〉2v(SA) + v(m)〈SA〉

c(NA, NA′) = 〈m〉2c(SA, SA′), A 6= A′

c(NA, SA′) = 〈m〉c(SA, SA′)

C(SA, SA′) = C(NA, NA′)− δAA
′ ω(m)

〈NA〉
≡ C(NA, NA′)

ω(m) = v(m)
〈m〉 (for Poisson ω(m) = 1)
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Digression: comparison to ALICE – superposition works

δ = ω(m) (more complicated but constant in the 3-stage approach)

δ = ω (nA)

(
1− ρ(nF , nB)

ρ(sF , sB)

)
ρ(sF , sB) =

ρ(nF , nB)

1− δ
ω(nA)

should be constant should be ∼ 1

○ ○ ○ ○ ○ ○ ○ ○ ○ ○
△ △ △ △ △ △ △ △ △ △▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇□ □ □ □ □ □ □ □ □ □⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕♡ ♡ ♡ ♡ ♡ ♡ ♡ ♡ ♡ ♡♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀
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[Olszewski+WB 2017]
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Partial correlations in the superposition model

Multiplicities in F,B are physical, multiplicity in C is a control variable

NC constraint:

C(SF , SB •NC) = C(NF , NB)− C(NF , NC)C(NB, NC)

v(NC)

SC constraint:

C(SF , SB • SC) = C(NF , NB)− C(NF , NC)C(NB, NC)

v(NC)

Only measured quantities (hadron multiplicities) on r.h.s.!

C(SF , SB •NC) vs C(SF , SB • SC) ↔ v(NC) vs v(NC)

Method allows us to impose constraints at the level of initial sources,
based on experimentally available info
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Test of the method



Test on actual simulations

Wounded quark model with GLISSANDO at centrality 30− 40%

Bzdak-Teaney model with triangular emission functions

3+1D viscous hydrodynamics

Statistical hadronization via THERMINATOR

Results for
1 all charged particles - π±, K±, p and p,
2 primordial particles - before resonance decays
3 π+

Wide acceptance, |η‖| ≤ 5.1, divided into 51 bins with ∆η = 0.2

→ partial correlations for sources

... compared to the partial correlations from the Bzdak-Teaney model

W. Broniowski Partial correlations Zimányi 2017 16 / 27



Triangles
[Bia las-Czyż 2005]: in the d+Au collisions the emission profiles for
wounded nucleons from A and B nuclei are approximate triangles
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Bzdak-Teaney (BT) model

Use the triangles, then:

C(SF , SB) =
v(Q+)

〈Q+〉2
+

v(Q−)

〈Q+〉2
uFuB,

where uF,B = ηF,B/yb, Q± = QA ±QB – numbers of wounded quarks

In the central (reference) bin SC we have η = 0, which yields

C(SF,B, SC) = C(SC , SC) =
v(Q+)

〈Q+〉2

C(SF , SB • SC) =
v(Q−)

〈Q+〉2
uFuB

(the same result follows via the condition fixing Q+ → v(Q+) = 0)
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Scaled covariance

Covariance matrices with the auto-correlations removed
Hallmark ridge along the diagonal from resonance decays

(looks as nothing ...)
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Partial: BT vs primordial

C : −0.1 < η < 0.1

Remarkable agreement of BT and primordial partial correlations

W. Broniowski Partial correlations Zimányi 2017 20 / 27



Partial: BT vs primordial

C : −0.1 < η < 0.1

No agreement for the NC constraint
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Partial: BT vs π+

Reduce correlations from resonance decays - no direct decays to π+π+
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Partial: BT vs all charged

Short-range correlations spoil the agreement
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Partial correlation
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Left+right constraint

L : −6.1 < η < −5.1, R : 5.1 < η < 6.1

(for BT the same effect as from the central constraint)
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Independent left- and right constraints

This correlation vanishes in BT

(fixes both QA and QB , so nothing is left to fluctuate)
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Conclusions



Conclusions

Partial correlations+superposition model – possibility of imposing
constraints at the level of sources, gaining insight into the initial stage

Contraining (event strictly) the number of particles leaves the
fluctuation of sources!

Feasibility of the method demonstrated on simulated data (wounded
quarks, hydrodynamics, THERMINATOR) - would be great to use on
actual data!

Need to reduce the short-range correlations (e.g., by looking at π+),
nice to have a large pseudorapidity acceptance

Several simultaneous constraints possible, generalization of the
concept of centrality

Köszönöm!
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