Hollowness in pp scattering

Wojciech Broniowski

Jan Kochanowski U., Kielce Institute of Nuclear Physics PAN, Cracow

16th Zimányi Winter School
Budapest, 5-9 December 2016

Research with Enrique Ruiz Arriola
Based on [arXiv:1609.05597]

From ISR to TOTEM

Parametrization of the elastic scattering amplitude

Parametrization by [Fagundes 2013] ${ }^{1}$, based on [Barger-Phillips 1974], motivated by the Regge asymptotics:

$$
\frac{f(s, t)}{p}=\sum_{n} c_{n}(s) F_{n}(t) s^{\alpha_{n}(t)}=\frac{i \sqrt{A} e^{\frac{B t}{2}}}{\left(1-\frac{t}{t_{0}}\right)^{4}}+i \sqrt{C} e^{\frac{D t}{2}+i \phi}
$$

s-dependent (real) parameters are fitted separately to all known differential pp cross sections for $\sqrt{s}=23.4,30.5,44.6,52.8,62.0$, and 7000 GeV with $\chi^{2} /$ d.o.f $\sim 1.2-1.7$

$$
\frac{d \sigma_{\mathrm{el}}}{d t}=\frac{\pi}{p^{2}}|f(s, t)|^{2}, \quad \sigma_{T}=\frac{4 \pi}{p} \operatorname{Im} f(s, 0)
$$

[^0]
Eikonal approximation

$$
\begin{gathered}
f(s, t)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(p) P_{l}(\cos \theta) \\
=\frac{p^{2}}{\pi} \int d^{2} b h(\vec{b}, s) e^{i \vec{q} \cdot \vec{b}}=2 p^{2} \int_{0}^{\infty} b d b J_{0}(b q) h(b, s) \\
t=-\vec{q}^{2}, q=2 p \sin (\theta / 2), b p=l+1 / 2+\mathcal{O}\left(s^{-1}\right), P_{l}(\cos \theta) \rightarrow J_{0}(q b) \\
\text { (would need 40000 partial waves at the LHC!) }
\end{gathered}
$$

In the impact-parameter representation the amplitude becomes

$$
h(b, s)=\frac{i}{2 p}\left[1-e^{i \chi(b)}\right]=f_{l}(p)+\mathcal{O}\left(s^{-1}\right)
$$

The eikonal approximation works well for $b<2 \mathrm{fm}$ and $\sqrt{s}>20 \mathrm{GeV}$
Procedure: $f(s, t) \rightarrow h(b, s) \rightarrow \chi(b) \ldots$

Fourier-Bessel transform

(TOTEM extends far enough)

Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross sections read

$$
\begin{aligned}
\sigma_{T} & =\frac{4 \pi}{p} \operatorname{Im} f(s, 0)=4 p \int d^{2} b \operatorname{Im} h(\vec{b}, s)=2 \int d^{2} b\left[1-\operatorname{Re} e^{i \chi(b)}\right] \\
\sigma_{\mathrm{el}} & =\int d \Omega|f(s, t)|^{2}=4 p^{2} \int d^{2} b|h(\vec{b}, s)|^{2}=\int d^{2} b\left|1-e^{i \chi(b)}\right|^{2} \\
\sigma_{\mathrm{in}} & \equiv \sigma_{T}-\sigma_{\mathrm{el}}=\int d^{2} b n_{\mathrm{in}}(b)=\int d^{2} b\left[1-e^{-2 \operatorname{Im} \chi(b)}\right]
\end{aligned}
$$

The inelasticity profile

$$
n_{\text {in }}(b)=4 p \operatorname{Im} h(b, s)-4 p^{2}|h(b, s)|^{2}
$$

satisfies $0 \geq n_{\text {in }}(b) \leq 1$ (unitarity)

Dip (or flattening) in the inelasticity profile at $b=0$

From top to bottom: $\sqrt{s}=14000,7000,200,23.4 \mathrm{GeV}$
Dip: collisions more distractive at $b>0$ than head-on!

Slope of the inelasticity profile

Transition around $\sqrt{s}=5 \mathrm{TeV}$

Amplitude and eikonal phase

$$
2 p h(b)=i\left[1-e^{i \chi(b)}\right]
$$

(top curves - Im, bottom - Re)
The dip clearly visible in $\operatorname{Im} \chi(b)$ for the LHC

Importance of the real part of the eikonal phase

Shorthand: $k(b)=\operatorname{Re}[2 p h(b)]$

$$
\begin{aligned}
k(b) & =1-\cos (\operatorname{Re}[\chi(b)]) e^{-\operatorname{Im}[\chi(b)]} \\
\operatorname{Re}[2 p h(b)] & =\sin (\operatorname{Re}[\chi(b)]) e^{-\operatorname{Im}[\chi(b)]}
\end{aligned}
$$

At the LHC $\operatorname{Re}[\chi(b)]<-\pi / 2 \rightarrow \cos (\operatorname{Re}[\chi(b)])<0 \rightarrow k(b)>1$ With the neglect of the small $\operatorname{Re}[2 p h(b)])^{2}$ we have then from $n_{i n}(b)=2 k(b)-k(b)^{2}$

$$
\frac{d n_{i n}(b)}{d b^{2}}=2 \frac{d k(b)}{d b^{2}}[1-k(b)]<0
$$

(minimum at the origin)
Glauber (1959): The eikonal phase is additive in scattering of composite objects. The (potentially small) eikonal phases of the components may add up to a large eikonal phase on the proton. Quantum interference is essiential

2D vs 3D opacity - geometric idea
Projection of 3D on 2D covers up the hollow: $f(x, y, z)$ vs $\int_{-\infty}^{\infty} d z f(x, y, z)$

The hollow is covered up

Optical potential

Phenomenological optical potential introduced by [Allen, Payne, Polyzou 2000] via the total squared mass operator for the pp system:

$$
\mathcal{M}^{2}=P^{\mu} P_{\mu} \stackrel{C M}{=} 4\left(p^{2}+M_{N}^{2}\right)+\mathcal{V}
$$

P^{μ} - total four-momentum, $p-\mathrm{CM}$ momentum of each nucleon, M_{N} nucleon mass, \mathcal{V} - invariant interaction, determined in the CM frame by matching in the non-relativistic limit to a non-relativistic potential, i.e., $\mathcal{V}=4 U=4 M_{N} V$
The prescription transforms the relativistic Schrödinger equation $\hat{\mathcal{M}}^{2} \Psi=s \Psi$, into an equivalent non-relativistic Schrödinger equation

$$
\left(-\nabla^{2}+U\right) \Psi=\left(s / 4-M_{N}^{2}\right) \Psi
$$

with the reduced potential $U=M_{N} V$ (to be determined by inverse scattering)
(no complication of spin/noncentrality)

Eikonal limit and optical potential

As in WKB $-\hbar^{2} \Psi=2 m(E-V) \Psi$, where $\Psi=A e^{i S / \hbar}$

$$
(\nabla S)^{2}-\overline{\text { in }}=2 m(E-V)
$$

$$
\nabla S / \hbar=\sqrt{p^{2}-2 m V / \hbar^{2}}
$$

In one dimension and for $k \gg$ other scales

$$
S / \hbar=p z-\frac{m}{\hbar^{2} p} \int_{-\infty}^{z} d z^{\prime} V\left(z^{\prime}\right)
$$

Inverse scattering and optical potential

In the eikonal approximation one has

$$
\begin{gathered}
\Psi(\vec{x})=\exp \left[i p z-\frac{i}{2 p} \int_{-\infty}^{z} U\left(\vec{b}, z^{\prime}\right) d z^{\prime}\right] \\
\chi(b)=-\frac{1}{2 p} \int_{-\infty}^{\infty} U\left(\sqrt{b^{2}+z^{2}}\right) d z=-\frac{1}{p} \int_{b}^{\infty} \frac{r U(r) d r}{\sqrt{r^{2}-b^{2}}}
\end{gathered}
$$

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can be inverted:

$$
U(r)=M_{N} V(r)=\frac{2 p}{\pi} \int_{r}^{\infty} d b \frac{\chi^{\prime}(b)}{\sqrt{b^{2}-r^{2}}}
$$

On-shell optical potential

From the definition of the inelastic cross section

$$
\sigma_{\mathrm{in}}=-\frac{1}{p} \int d^{3} x \operatorname{Im} U(\vec{x})|\Psi(\vec{x})|^{2}
$$

\rightarrow density of inelasticity is proportional to the absorptive part of the optical potential times the square of the modulus of the wave function. One can identify the on-shell optical potential as

$$
\operatorname{Im} W(\vec{x})=\operatorname{Im} U(\vec{x})|\Psi(\vec{x})|^{2}
$$

Upon z integration,

$$
-\frac{1}{p} \int d z \operatorname{Im} W(\vec{b}, z)=n_{i n}(b)
$$

Inversion yields

$$
\operatorname{Im} W(r)=\frac{2 p}{\pi} \int_{r}^{\infty} d b \frac{n^{\prime}(b)}{\sqrt{b^{2}-r^{2}}}
$$

Results of inverse scattering

exp. amplitude \rightarrow eikonal phase $\rightarrow U(r)=M_{N} V(r)$ exp. amplitude \rightarrow inelasticity profile $\rightarrow W(r)$

From top to bottom: $\sqrt{s}=14000,7000,200,23.4 \mathrm{GeV}$ Large dip in the absorptive parts, in $W(r)$ starts already at RHICl

Gaussian model of Dremin (2014)

$$
\begin{aligned}
& 2 p \operatorname{Im} h(b) \equiv k(b)=4 X e^{-b^{2} /\left(2 B^{2}\right)}, \operatorname{Reh}(b)=0, X=\sigma_{e l} / \sigma_{T} \\
& n_{i n}(b)=2 k(b)-k(b)^{2}=8 X e^{-b^{2} /\left(2 B^{2}\right)}-16 X^{2} e^{-b^{2} / B^{2}}
\end{aligned}
$$

- $X>1 / 4: n_{\text {in }}(b)$ has a maximum at $b_{0}=\sqrt{2} B \log (4 X)>0$, with $k\left(b_{0}\right)=1$
- $X=1 / 2$: black disk limit
- $W(r)$ develops a dip when $X>\sqrt{2} / 8=0.177$

Cross sections

$\sigma_{\text {el }}$ grows relatively faster than $\sigma_{\text {tot }}$
\rightarrow ratio X goes above $1 / 4$ as s increases!

Conclusions

- Hollowness (or flatness) in $n_{i n}(b)$ inferred from the parametrization of the data
- Quantum effect, rise of $2 p \operatorname{Im} h(b)$ above 1
- 2D \rightarrow 3D magnifies the effect (flat in 2D \rightarrow hollow in 3D) [Interpretation via optical potential in the relativized problem]
- Not possible to obtain classically by folding the absorptive parts from uncorrelated constituents
- Microscopic/dynamical explanations [Nemes+Csorgo 2012, Alba Soto+Albacete 2016]
- Qualitatively similar hollowness effect in low-energy n-A scattering

[^0]: ${ }^{1}$ Could use other param., e.g.,
 Ster+Jenkovszky+Csorgo 2015, Csorgo+Glauber+Nemes 2013

