From chiral quarks to high-energy processes

Wojciech Broniowski

Institute of Nuclear Physics PAN, Cracow & Jan Kochanowski University, Kielce

with Enrique Ruiz Arriola and Alexander E. Dorokhov

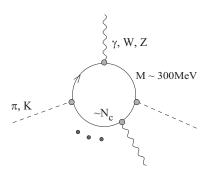
Excited QCD, Zakopane, 8-14 February 2009

- Gravitational and higher-order form factors of the pion in chiral quark models, WB, Enrique Ruiz Arriola, Phys. Rev. D78 (2008) 094011
- Generalized parton distributions of the pion in chiral quark models and their QCD evolution, WB, ERA, Krzysztof Golec-Biernat, Phys. Rev. D77 (2008) 034023
- Pion-photon Transition Distribution Amplitudes in the Spectral Quark Model, WB, ERA, Phys. Lett. B649 (2007) 49
- Photon distribution amplitudes and light-cone wave functions in chiral quark models, Alexander E. Dorokhov, WB, ERA, Phys. Rev. D74 (2006) 054023

Other groups:

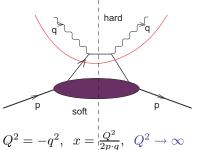
- Praszałowicz, Rostworowski, Bzdak, Kotko (Jagellonian)
- Noguera, Vento, Theussl, Courtoy (Valencia)
- Tiburzi, Miller (Seattle)
- Bochum, Tübingen groups (nucleon)

Chiral quark models



- ullet soft regime o chiral sym. breaking
- NJL (Nobel 2008), instanton liquid, DSE
- relatively few parameters (traded for f_{π} , m_{π} , ...)
- very many processes can be computed!
- no confinement careful not to open the $q\overline{q}$ threshold

Example: Deep Inelastic Scattering



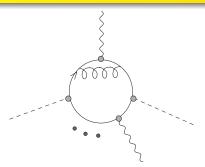
Factorization of soft and hard processes, Wilson's OPE, twist expansion

$$\langle J(q)J(-q)\rangle = \sum_{i} C_{i}(Q^{2};\mu)\langle \mathcal{O}_{i}(\mu)\rangle, \ F(x,Q) = F_{0}(x,\alpha(Q)) + \frac{F_{2}(x,\alpha(Q))}{Q^{2}} + \dots$$

The soft matrix element can be computed in low-energy models!

$$\left.F_i(x, \alpha(Q_0))\right|_{\mathrm{model}} = \left.F_i(x, \alpha(Q_0))\right|_{\mathrm{QCD}}, \quad Q_0 - ext{the matching scale}$$

QCD evolution

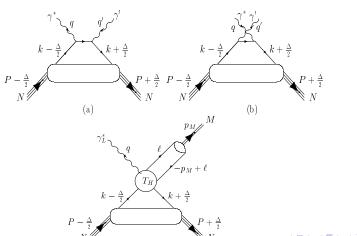


inclusion of gluons

- Here: DGLAP (good for intermediate x)
- Chiral quark models provide dynamically the non-perturbative initial conditions for the QCD evolution
- Inclusive and exclusive high-energy processes and lattice calculations provide the relevant data to verify-the scheme

Exclusive processes in QCD

(see earlier talks by Machado and Wagner)



Deeply Virtual Compton Scattering

Hard Meson Production

Definition of Generalized Parton Distributions

Twist-2 even-parity GPDs of the pion non-singlet:

$$\mathcal{H}^{q,I=1}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixp^{+}z^{-}} \langle \pi^{+}(p+q)|\bar{\psi}(0)[0,z]\gamma^{+}\tau_{3}\psi(z)|\pi^{+}(p)\rangle\big|_{z^{+}=0,z^{\perp}=0}$$

(similarly for singlet quarks and gluons)

$$p^2=m_\pi^2,~q^2=-2p\cdot q=t,~\zeta=q^+/p^+$$

 ζ - momentum transfer along the light cone

$$([0,z]=1$$
 in the light-cone gauge)

Reviews:

- K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47 (2001) 401, hep-ph/0106012
- M. Diehl, Phys. Rept. 388 (2003) 41, hep-ph/0307382
- A. V. Belitsky, A. V. Radushkin, Phys.Rept.418(2005)1, hep-ph/0504030

GPDs provide very rich information of the structure of hadrons, encoding form factors, PDFs, ... Data may come from such processes as $ep \rightarrow ep\gamma$, $\gamma p \rightarrow p l^+ l^-$, $ep \rightarrow ep l^+ l^-$, or from lattices. Small cross sections of exclusive processes require very high accuracy experiments. First results for the nucleon are coming from HERMES and CLAS, also COMPASS, H1, ZEUS

Formal features

Symmetric notation:
$$\xi = \frac{\zeta}{2-\zeta}$$
, $X = \frac{x-\zeta/2}{1-\zeta/2}$, with $0 \le \xi \le 1$, $-1 \le X \le 1$

$$H^{I=0}(X,\xi,t) = -H^{I=0}(-X,\xi,t), \ H^{I=1}(X,\xi,t) = H^{I=1}(-X,\xi,t).$$

For
$$X \geq 0$$
 we have $\mathcal{H}^{I=0,1}(X,0,0) = q(X)$ - the usual PDF

The following sum rules hold:

$$\forall \xi: \int_{-1}^{1} dX H^{I=1}(X, \xi, t) = 2F_{V}(t),$$
$$\int_{-1}^{1} dX X H^{I=0}(X, \xi, t) = 2\theta_{2}(t) - 2\xi^{2}\theta_{1}(t),$$

where $F_V(t)$ is the electromagnetic form factor, while $\theta_1(t)$ and $\theta_2(t)$ are the gravitational form factors (related to the charge conservation and the momentum sum rule in DIS)

The **polynomiality** conditions (Lorentz invariance, time reversal, and hermiticity):

$$\int_{-1}^1\!\! dX\, X^{2j}\, H^{I=1}(X,\xi,t) = 2\sum_{i=0}^j A_{2j+1,2i}(t)\xi^{2i},$$

(similarly for singlet)

A's – generalized form factors (GFFs)

Another way to look at GFFs:

$$\langle \pi^{+}(p') | \overline{u}(0) \gamma^{\{\mu} i \stackrel{\smile}{D}^{\mu_{1}} i \stackrel{\smile}{D}^{\mu_{2}} \dots i \stackrel{\smile}{D}^{\mu_{n-1}\}} u(0) | \pi^{+}(p) \rangle =$$

$$2P^{\{\mu} P^{\mu_{1}} \dots P^{\mu_{n-1}\}} A_{n0}(t) + 2 \sum_{\substack{k=2 \text{even}}}^{n} q^{\{\mu} q^{\mu_{1}} \dots q^{\mu_{k-1}} P^{\mu_{k}} \dots P^{\mu_{n-1}\}} 2^{-k} A_{nk}(t)$$

GPDs may be viewed as an infinite collection of GFFs

The positivity bound:

$$|H_q(X,\xi,t)| \leq \sqrt{q(x_{\rm in})q(x_{\rm out})}, \quad \ \xi \leq X \leq 1.$$

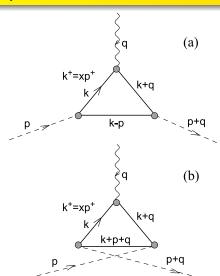
where
$$x_{\rm in} = (x + \xi)/(1 + \xi)$$
, $x_{\rm out} = (x - \xi)/(1 - \xi)$.

Finally, a low-energy theorem $H_{I=1}(2z-1,1,0)=\phi(z)$ holds, where ϕ is the pion distribution amplitude (DA)

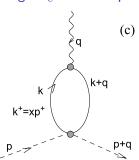
Above relations and bounds impose severe constraints on the form of the GPDs

All are satisfied in our quark-model calculation

QM evaluation of the GPDs



Large- N_c = one loop



Direct (a), crossed (b), and contact (c) contribution (D-term) to the GPD of the pion (wavy line: γ^+)

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude GPD in QM

PDF, QM

With $\zeta=t=0$, the GPD becomes the PDF. The Nambu–Jona-Lasinio model (Davidson, Arriola, 1995) gives

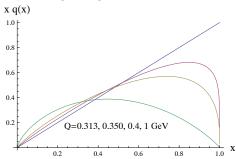
$$q(x) = 1$$

PDF, QM

With $\zeta=t=0$, the GPD becomes the PDF. The Nambu–Jona-Lasinio model (Davidson, Arriola, 1995) gives

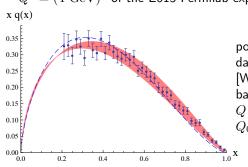
$$q(x) = 1$$

LO DGLAP QCD evolution (good at intermediate \boldsymbol{x}) of the non-singlet part to growing scales



PDF, QM vs. E615

LO DGLAP QCD evolution of the non-singlet part to the scale $Q^2=(4~{\rm GeV})^2$ of the E615 Fermilab experiment:



points: Drell-Yan from E615 dashed: reanalysis of data [Wijesooriya et al., 2005] band: valence QM PDF evolved to Q=4 GeV from the QM scale $Q_0=313^{+20}_{-10}$ MeV

The quark-model scale Q_0

Various ways to fix: PDF, DA, moments

From experiment, the momentum fraction carried by the valence quarks is [SMRS 1992, GRS 1999]

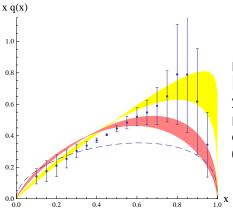
$$\langle x \rangle_v = 0.47(2)$$
 at $Q^2 = 4 \text{ GeV}^2$

QM scale = no gluons, may evolve backwards until $\langle x \rangle_v = 1$ \rightarrow quark-model scale for NJL

$$Q_0 = 313^{+20}_{-10} \text{ MeV}$$

(here for the so called local model, for other QM Q_0 may vary) At this scale $\alpha(Q_0^2)/(2\pi)=0.34$, which makes the evolution very fast for the scales close to the initial value – calls for improvement!

PDF, QM vs. lattice

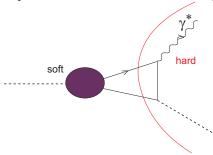


points: transverse lattice [Dalley, van de Sande, 2003] yellow: QM evolved to 0.35 GeV pink: QM evolved to 0.5 GeV dashed: GRS parameterization at

0.5 GeV

Pion Distribution Amplitude

[Bakulev, Mikhailov, Stefanis, ...]



Definition (for π^+ , leading twist):

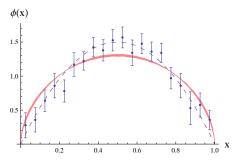
$$\langle 0|\overline{d}(z)\gamma_{\mu}\gamma_{5}u(-z)|\pi^{+}(q)\rangle =$$

$$i\sqrt{2}f_{\pi}(q^{2})q_{\mu}\int_{0}^{1}dx e^{i(2x-1)q\cdot z}\phi(x)$$

Normalization $\int_0^1 dx \phi(x) = 1$, since $\langle 0|A_\mu^-(0)|\pi^+(q)\rangle = if_\pi(q^2)q_\mu$ PDA is also relevant for the $\pi^0\gamma\gamma^*$ transition form factor measured by CLEO and CELLO

Similar studies in [Praszałowicz, Rostworowski, 2003]

PDA, QM vs. E791 and lattice data



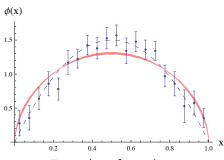
points: E791 data from di-jet production in $\pi + A$

band: QM at $Q=2~{\rm GeV}$

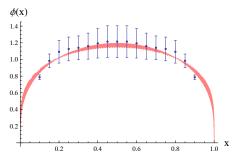
dashed line: asymptotic form

$$(Q \to \infty)$$

PDA, QM vs. E791 and lattice data



points: E791 data from di-jet production in $\pi+A$ band: QM at Q=2 GeV dashed line: asymptotic form $(Q\to\infty)$



points: transverse lattice data [Dalley, van de Sande, 2003] band: QM at $Q=0.5\,\,\mathrm{GeV}$

GPD in chiral quark models

Analytic formulas derived, **no factorization of the** *t***-dependence** - sheds light on possible parameterizations.

Building block of the GPD in Spectral Quark Model (SQM):

$$J_{\text{SQM}}(x,\zeta;t) = (\theta[x(\zeta-x)]\chi_1 + \theta[(1-x)(x-\zeta)]\chi_2)$$

$$\chi_{2} = \frac{2(x-1)\left[3(\zeta-1)M_{V}^{2} + t(x-1)^{2}\right]}{\left[(\zeta-1)M_{V}^{2} + t(x-1)^{2}\right]^{2}},$$

$$\chi_{1} = \frac{(x(\zeta-2)+\zeta)\left(3M_{V}^{2}(\zeta-1)\zeta^{2} + t\left(\left(\zeta^{2} + 8\zeta - 8\right)x^{2} + 2(4-5\zeta)\zeta x + \zeta^{2}\right)\right)}{\left((\zeta-1)M_{V}^{2} + t(x-1)^{2}\right)^{2}\left(\zeta^{2} + \frac{4tx(x-\zeta)}{M_{V}^{2}}\right)^{3/2}} + \frac{1}{2}\chi_{2}$$

 M_v – mass of the ρ meson

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude GPD in QM

Similar studies in [Praszałowicz, Rostworowski, 2003] in a non-local model

Next slide:

LO DGLAP-ERBL evolution for SQM with $\xi=1/3$. Solid - initial condition, dashed - evolved to $Q^2=(4{\rm GeV})^2$, dotted - asymptotic form. Code: [Golec-Biernat, Martin, 1999]

GPDs of the pion The quark-model scale PDF and PDA PDF, lattice Generalized form factors Pion distribution amplitude GPD in QM Summary t=-1 GeV2 (SQM) t=0 -0.4 -0.2 0.2 -0.4 -0.2 ∯ ± 2.5 ∯_{2.5} 5 ******* ******* -2.5 -2.5 -0.4 -0.2 0.2 -0.4 -0.2 0.2 -0.8 0.6 0.8 0.8 (₹X)^B 1.5 (₹X)[®] HX1.5 0.5 0.5 -0.2 0.2 0.8 -0.8 -0.6 -0.4 -0.2 0 = 0.2 0.4 0.6 = 0.8 -0.8 -0.6 -0.4 0.6

PDF, E615

Gravitational form factors

Electromagnetic current:

$$J_V^{\mu} = \sum_{q=u,d,...} \bar{q}(x) \frac{\tau_a}{2} \gamma^{\mu} q(x)$$

Energy-momentum tensor:

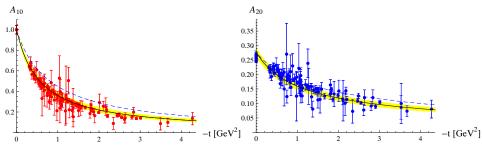
$$\Theta^{\mu\nu} = \sum_{q=u,d,\dots} \bar{q}(x) \frac{\mathrm{i}}{2} \left(\gamma^{\mu} \partial^{\nu} + \gamma^{\nu} \partial^{\mu} \right) q(x) + \text{gluons}$$

Two structures (form factors):

$$\langle \pi^b(p') \mid \Theta^{\mu\nu}(0) \mid \pi^a(p) \rangle = \frac{1}{2} \delta^{ab} \left[(g^{\mu\nu} q^2 - q^{\mu} q^{\nu}) \Theta_1(q^2) + 4P^{\mu} P^{\nu} \Theta_2(q^2) \right]$$

traceless tensor $-\Theta_1$ and scalar $-\Theta_2$ Lattice, exclusive processes

Full-QCD Euclidean lattice results

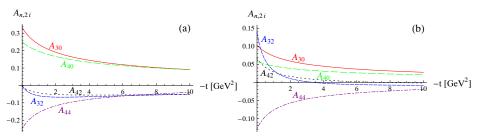


The EM FF (left) and the quark part of the gravitational form factor Θ_1 (right) in SQM (solid line) and NJL (dashed line), compared to data from [Brömmel et al., 2005-7]

Quark-model relation: $\langle r^2\rangle_\Theta=\frac{1}{2}\langle r^2\rangle_V$

Matter more concentrated than charge!

Higher-order form factors - predictions



The quark GFFs $A_{3,2i}$ and $A_{4,2i}$ at the quark-model scale $Q_0\sim 320~{
m MeV}$ (a) and at the lattice scale $Q=2~{
m GeV}$ (b)

Quark moments at $t = \xi = 0$

With the notation $\langle x^n \rangle = A_{n+1,0}(0)$, one finds at the lattice scale of Q=2 GeV [Brömmel et al., 2007]

$$\langle x \rangle = 0.271 \pm 0.016$$

$$\langle x^2 \rangle = 0.128 \pm 0.018$$

$$\langle x^3 \rangle = 0.074 \pm 0.027$$
(lattice)

while in QM after the LO DGLAP evolution to the lattice scale

$$\begin{split} \langle x \rangle &= 0.28 \pm 0.02 \\ \langle x^2 \rangle &= 0.10 \pm 0.02 \\ \langle x^3 \rangle &= 0.06 \pm 0.01 \\ \text{(chiral quark models)} \end{split}$$

Agreement within uncertainties

Other quantities

- Photon DAs (with A. E. Dorokhov)
- Transition Distribution Amplitudes (TDA) [Pire, Szymanowski, 2005] (as the GPD, but between the π and γ states)
- b-representation of GPDs and transverse lattices

- Link between high- and low-energy analyses
- Quark models provide (reasonable) initial conditions for the QCD evolution
- 3 Analytic formulas useful for general properties, (e.g., no factorization of the t-dependence
- With naive DGLAP-ERBL evolution the overall agreement with the data and lattice simulations very reasonable (PDF, DA, GFFs, GPD, photon DA, TDA, ...)
- In QM the mean squared EM radius is twice the gravitational one
- Predictions can be further tested with future lattice simulations for higher-order form factors. The behavior is non-trivial, with form factors having different signs, magnitude, and asymptotic fall-off.
- ③ GPDs of the **nucleon**: more challenging (Bochum, Tübingen soliton) but experimental data exist