Fluctuations of the initial condition from the Glauber models*

Wojciech Broniowski

Jan Kochanowski University, Kielce, and Institute of Nuclear Physics PAN, Cracow

Three Days of Strong Interactions, EMMI Workshop, Wrocław, 9 - 11 July 2009

*research with Maciej Rybczyński, Łukasz Obara, and Mikołaj Chojnacki 🚊 🗠 🗠

Wounded nucleons

- Wounded nucleons [Białas, Błeszyński, Czyż, 1976] are a basic concept in heavy-ion analyses
- RHIC: 86% wounded + 14% binary describes the multiplicities
- Determination of centrality, impact parameter, analyses of fluctuations, ...
- Basic steps in simulations: 1) generate nucleon positions in nuclei from a WS distribution in an independent way (no correlations), 2) count collisions

Wojciech Broniowski Fluctuations of the initial condition

The NN force

Correlations in nuclei are important for fluctuations [Baym, Blattel, Frankfurt, Heiselberg, Strikman, 1995]

Wojciech Broniowski

NN correlations

Recent progress: A Monte Carlo generator of nucleon configurations in complex nuclei including Nucleon-Nucleon correlations [Alvioli, Drescher, Strikman, arXiv:0905.2670]

generate configurations with the inclusion of two-body correlations according to the wave function

 $\Psi(r_1,\ldots,r_N) = \prod_{i < j} f(r_{ij}) \Phi_{\text{indep.}}(r_1,\ldots,r_N)$

Metropolis algorithm

GLauber Initial State Simulations AND mOre [WB, Rybczyński, Bożek, Oct. 2007, Comput. Phys. Commun. 180(2009)69] read the provided distributions with correlations

э

Multiplicity, NA49 setup

 N_p^{PROJ} - number of wounded nucleons in the projectile $\langle N \rangle = kqN_w/2$, where k = 3 - number of charged particles produced per wounded pair, q = 0.2 - detector acceptance (SPS setup)

std - independent with expulsion distance $a = 0.4^{\circ}$ std, d = 0 - independent with no expulsion

mod - with correlations, configurations from Alvioli et al.

fluctuations reduced

(日) (周) (日) (日)

Eccentricity, fixed axes

$$\epsilon = \frac{\langle y \rangle^2 - \langle x \rangle^2}{\langle y \rangle^2 + \langle x \rangle^2}$$

fluctuations slightly decreased

Eccentricity, variable axes

 ϵ^* computed in an event-by-event rotated frame (principal-axes frame), where it is maximal ("participant" eccentricity)

for central collisions the limit $\Delta \epsilon^*/\epsilon^* = \sqrt{4/\pi - 1} \simeq 0.52$ follows (for uncorrelated systems) from the central limit theorem [WB, Bożek, Rybczyński, Phys. Rev. C76(2007)054905]

Summary of correlation effects

- One-body observables are left intact by two-body correlations
- Event-by-event fluctuations are reduced, as the distribution with fluctuations is more regular
- Effects for the multiplicity fluctuations are substantial
- Effects for the eccentricity studies are very small

イロト イポト イヨト イヨト

Size fluctuations

(so far the study without correlations discussed above)

compute event-by-event the average size, here defined as

$$\langle r \rangle = \frac{1}{N_w} \sum_{i=1}^{N_w} \sqrt{x_i^2 + y_i^2}$$

イロト イポト イヨト イヨト

 $\left<\left<.\right>\right>$ - averaging also over events

Size fluctuation

independent of energy from SPS ($\sigma_{NN} = 32 \text{ mb}$) to LHC ($\sigma_{NN} = 63 \text{ mb}$)

Hydrodynamics

Hydro carries over the initial size fluctuation to $\langle p_T \rangle$ fluctuations

- $\bullet~$ initial state $\rightarrow~$ hydrodynamics $\rightarrow~$ freezeout $\rightarrow~$ hadrons
- more compressed initial condition leads to a faster build-up of flow, and then higher transverse velocity at freezeout, which in turn leads to higher $\langle p_T \rangle$
- $\Delta p_T / \langle p_T \rangle \simeq A \Delta \langle r \rangle / \langle \langle r \rangle \rangle$
- we estimate the proportionality constant via simulations with hydro (Lhyquid - M. Chojnacki, W. Florkowski) and THERMINATOR

(日) (同) (日) (日)

Best cases - solution of the HBT puzzle

Consider the solutions of hydro with Gaussian initial conditions

Wojciech Broniowski

Fluctuations of the initial condition

Fluctuations of the FO surface

Fluctuations of the size of the initial condition \to hydro \to fluctuations of the freezeout surface and velocity

(日) (同) (日) (日)

p_T fluctuations

fluctuations of the freezeout surface and velocity \to THERMINATOR \to fluctuations e-by-e of $\langle p_T \rangle$

- $c = 0 5 \quad \rightarrow N_w \simeq 350 \qquad \sigma_{\rm dyn}(p_T)$ $c = 20 30 \rightarrow N_w \simeq 160 \qquad \sigma_{\rm dyn}(p_T)$ $c = 60 70 \rightarrow N_w \simeq 30 \qquad \sigma_{\rm dyn}(p_T)$
- $\begin{aligned} \sigma_{\rm dyn}(p_T)/\langle p_T \rangle &\simeq 1.4\% \\ \sigma_{\rm dyn}(p_T)/\langle p_T \rangle &\simeq 2.3\% \\ \sigma_{\rm dyn}(p_T)/\langle p_T \rangle &\simeq 4.5\% \end{aligned}$

・ロト ・ 同ト ・ ヨト ・ ヨト

p_T fluctuations

fluctuations of the freezeout surface and velocity \to THERMINATOR \to fluctuations e-by-e of $\langle p_T \rangle$

 $\begin{array}{ll} c = 0 - 5 & \rightarrow N_w \simeq 350 & \sigma_{\rm dyn}(p_T)/\langle p_T \rangle \simeq 1.4\% \\ c = 20 - 30 \rightarrow N_w \simeq 160 & \sigma_{\rm dyn}(p_T)/\langle p_T \rangle \simeq 2.3\% \\ c = 60 - 70 \rightarrow N_w \simeq 30 & \sigma_{\rm dyn}(p_T)/\langle p_T \rangle \simeq 4.5\% \end{array}$

p_T fluctuations, various data

[data from PRC 72 (2005) 044902]

◆□ > ◆□ > ◆豆 > ◆豆 >

Summary of size fluctuations

- a few percent effect, explains the experimental p_T fluctuations
- proper scaling with N_w: σ²_{dyn}(p_T) ∼ 1/N_w − proper dependence on centrality
- many attempts made previously: (mini) jets, clusters, temperature fluctuations
- "geometric/statistical" origin
- weak dependence on energy

イロト イポト イヨト イヨト