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@ Pion transition form factor in the Regge approach and incomplete
vector-meson dominance E. Ruiz Arriola and WB, Phys. Rev. D81
(2010) 094021

@ Gravitational and higher-order form factors of the pion in chiral
quark models, WB, ERA, Phys. Rev. D78 (2008) 094011

@ Pion electromagnetic form factor, perturbative QCD, and large-N,.
Regge models, ERA, WB, Phys. Rev. D78 (2008) 034031

@ Generalized parton distributions of the pion in chiral quark models
and their QCD evolution, WB , ERA, K. Golec-Biernat, Phys. Rev.
D77 (2008) 034023
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The BaBar shock

@ .
¥BaBar.  The n° Transition Form Factor
N The form factor multiplied by Q2 is fit with:
2 [ CELLO , .\
L3+ A cLEO ) ) [ @
= ® BABAR Q’lF Q )| = A| T 7 | for 4<Q2<40 GeV?,
o Preliminary (10GeV” )
;,ﬁ + where A=0.182+0.002 GeV and =0.25+0.02.
Foal | a4t
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% Data: Q?[F(Q@?) ~ Q2
Leading order pQCD: Q?|F(Q?)| ~ const.

(in the asymptotic limit)
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Predicted asymptotic limit /2 f, = Higher order pQCD and power corrections
are needed in the Q2 region under study.
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I
The Q2-independent systematic error: 2.3%

To be submitted to PRD 16
[from Selina Li @ Photon 2009, page 16 (!)]

WB BaBar, chiral quarks, Regge models



BaBar
Outline

Why shocking?

Contradicts expectations based on
o factorization

@ pQCD evolution (done twist-by-twist)
Brodsky-Lepage:

2fr [, Gus 6fx
Q?*Fro,,+(Q%) — Ni /0 dxqs—(x) = Ni

T

=2fx

Numerous attempts by [Radyushkin, Polyakov, Dorokhov, Noguera,
Vento, Mikhailov, Stefanis, Bakulev, Kotko, Praszalowicz,

Kochelev, Diehl, Kroll, Chernyak, Khodjamirian, Li, Nishima,

N
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Outline

© General constraints: anomaly, Terazawa-West bounds, rare Z
decays

@ Can TW bounds be violated? - subtracted dispersion relations
© Chiral quark models [see Arriola, Polyakov, Dorokhov]

@ Regge models

© Conclusions
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Anomaly
Terazawa-West bounds
Rare 20 decay

Subtracted dispersion relations

Terazawa-West unitarity bounds

[Terazawa 1972, West 1973, recalled by Dorokhov 2009]

Schwarz inequality involving sums of (0|J,(0)|n) and (7%(g)|J.(0)|n)
|(x1.7.710)] < ([(0].TJ[0)[ (|1 T |}/

InFy0,y-(¢%) = O(1/V/@)  (TW )
for time-like momenta, ¢ > 4m?2

If there are no polynomial terms in the real part of Fi 0., then

|F7r°"r'y* (q2)| = 0(1/\/(1_2)

Dispersion relation yields

|F7r0'y'y* (Q2)| = O(I/Q) (TW II)

for all momenta, also large space-like momenta
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Anomaly

Terazawa-West bounds

Rare Z" decay

Subtracted dispersion relations

The constant in the bound may be given [Terazawa 1973] in terms of the
photon spectral density and the pion structure function,

2
|Frons- (@3)] < 2V / A Q%)

(1 —x)

S

1 2
H(S) = mafre*—)hadrons(s% H(OO) = 1272 Zi:ei

With the SMRS and GRV parameterizations for F; we obtain (for Q? in
the range 10 — 40 GeV?)

Fro- (@) < 250 (10
< 0'75(1) (NLO)

=] F
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Q* Fryy (@) [MeV]

PP ST 3 - L
o s 10 B 2 » @ ®
Q?[Gev]
The TW Il bound is “inefficient”, an order of magnitude above the

BaBar data

«O0>» «Fr «E» « > ae



Only the vector coupling of the Z° boson to the quarks contributes
[Jacob, Wu 1989], hence

FZ—)WO'y(QQ) _ Fﬂo'y 'y(qz)
Fy_70,(0)

Fﬂ'o’Y*’Y(O) ‘
The experimental limit

['(Z° = 7%) < 5 x 107 T4t (Z2°) = 10.25 x 1075GeV implies

|FZ°—>7r°'y(M%)/FZ0—>7r0fy(0)| < 0.17

«O0>» «Fr «E» « > ae
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Subtracted dispersion relations

Anomaly

Terazawa-West bounds

Rare Z" decay

Subtracted dispersion relations

The assumption of the absence of the polynomial terms is equivalent to
validity of the unsubtracted dispersion relation
pQCD with factorization — 0.+, vanishes as ) — oo

Below we consider cases where this is not be the case.

Even if the form factor vanishes at infinity, we can write a subtracted
relation

1 ¢t ImF 1 [ tImF
F(t)—F(O):—/ EL@d8+_/ tImF(s) .
T Jso s s—1 T Japnz 8 S—t

If Ais large (A% > Q?), the second term is very slowly varying with Q?
and mimics a constant. In particular, for ImF'(s) ~ 1/4/s it behaves as

1/A+0(1/Q)

WB BaBar, chiral quarks, Regge models
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Motivation

Glossary of quark-model results

Form factors from the fullQCD lattice
Georgi-Manohar model

Basic idea of chiral quark models

@ illustration how TW 1l
may be violated

@ Re and Im parts of the
ff can be computed

M ~ 300MeV

wB

covariant Lagrangian-form calculation,
no factorization

@ soft regime — chiral symmetry

breaking
NJL, instanton-motivated [Dorokhov]

relatively few parameters (traded for
fro Mz, )

numerous processes with pions, 7, ...

no confinement - careful not to open
the ¢g threshold

quark model scale low - need for QCD
evolution if higher scales are involved

BaBar, chiral quarks, Regge models



computing soft matrix elements

Glossary of results showing that the approach is reasonable for
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Motivation

Glossary of quark-model results

Form factors from the fullQCD Ilattice
Georgi-Manohar model

Parton Distribution Function of the pion

NJL gives [Davidson, Arriola, 1995]

q(z) =1

LO DGLAP QCD evolution (good at intermediate ) of the non-singlet

part to growing scales
X q(x)

10

08

061 — \\\

R
N
041 /» S “

o2f ~7Q=0313,0350,0.4, 1GeV “

0.2 04 0.6 0.8

wB

The same constant PDF of the pion
follows from AdS/CFT
[Brodsky, Teramond 2008]

The question of renormalization
scale: momentum sum-rule —

to ~ 320 MeV — at 2 GeV valence
quarks carry 47% of the momentum

N J[Durham), a(uo)/m = 0.68
1.0

BaBar, chiral quarks, Regge models



Motivation

Glossary of quark-model results

Form factors from the fullQCD Ilattice
Georgi-Manohar model

Valence PDF from NJL vs. E615

X q(x)

points: Drell-Yan from E615
dashed: reanalysis of the data
[Wijesooriya et al., 2005]

band: valence PDF from NJL
evolved from the QM scale

po = 313720 MeV to 1 = 2 GeV of
)zche experiment
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Motivation

Glossary of quark-model results

Form factors from the fullQCD Ilattice
Georgi-Manohar model

Valence PDF from NJL vs. transverse lattice

transverse lattices: [Burkardt, Dalley, Van de Sande]

X q(x)
1.0:
i points: transverse lattice
osf [Dalley, Van de Sande, 2003]
i yellow: NJL evolved to
oer w=0.35 GeV
0.45 pink: NJL evolved to u = 0.5 GeV
i P8 dashed: GRS parametrization at
0al nw=0.5 GeV
L/
%0 02 04 06 08 10%
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Motivation

Glossary of quark-model results

Form factors from the fullQCD Ilattice
Georgi-Manohar model

Pion Distribution Amplitude

1

Ol sl ~2la(=2)w(@) = V3L ) | dae 2 g(0)
(22 =0, in the light-cone gauge [z, —2] = 1)
NJL [ERA, WB 2003)]: ¢(z) =1 (at QM scale)

(different from AdS/CFT: ~ 2/2(1 — z) or 6z(1 — z))

Nonvanishing at the end points [see Polyakov's talk for implications]
LO ERBL evolution makes ¢(z) vanish at the end-points [WB, ERA,
Golec-Biernat, 2008]

() ~ 2207 /B0 loglalm) /()]
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Motivation

Glossary of quark-model results

Form factors from the fullQCD Ilattice
Georgi-Manohar model

PDA from NJL vs. E791 and lattice data

$(x)

$(x)

15¢

10+

05F

: ! ! - - - y X
points: E791 data from di-jet . * 0'4 o 0 "
production in 7 + A points: transverse lattice data
band: NJL evolved to u = 2 GeV [Dalley, Van de Sande, 2003]

dashed line: asymptotic form band: NJL evolved to ;1 = 0.5 GeV

(1 — 00)
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NJL vs. full-QCD Euclidean lattice

Motivation

Glossary of quark-model results

Form factors from the ful-QCD lattice
Georgi-Manohar model

Ax

—t [GeV?]

0 1 2 3 4 0 1 2 3 4

Pion charge ff (left) and the quark part of the spin-2 gravitational ff
(right) in SQM (solid line) and NJL (dashed line) [WB, ERA 2008],
compared to the data [Brommel et al., 2005-7]

Quark-model relation: (r?)e = 1(r?)y
Matter more concentrated than charge!
(also found in soft-wall AdS/CFT [talks by Brodsky and Teramond])

WB BaBar, chiral quarks, Regge models



Violating the TW Il bound
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Motivation
Glossary of quark-model results

Form factors from the ful-QCD lattice
Georgi-Manohar model

Georgi-Manohar model as a TW ll-violating model

L=q(ip+ oG ps— M)+

A, = %(uTaﬂu - u@tuT), w=eTT/CH U =2

2
Tr (0,UT0"U) + WZW

Fro (@) = —— + 92160y -1
e A P

Q?) 2M2/ —log[1+x(1—x)Q2]

M2
Anomaly satisfied, but for gA # 1 no vanishing at Q2 — oco:

F o *(QQ) —_ 1 gA + 92M2 [log(QQ/MQ)] +
™YY f 471_2‘](-7‘_ Q2 N
Fulfills dispersion relation and TW | but not TW Il

[
N .5 chiral quarks, Regge models




Motivation
Glossary of quark-model results

Georgi-Manohar model

Form factors from the ful-QCD lattice

Spectral Quark Model:

QY =5

2m2 +m_§10 m? + Q*
mp+ Q% Q? ¢ mp

With gg =1 this model fulfills the result of [Radyushkin 2009] with a

similar mass scale, m,,:

1-¢% | gim} [log(@*/m2)]

Froyy (@) = dm2f.  12m2f, Q?

+...

No factorization within chiral quark models —

NJL: QQFﬂ'O'y'y* (Q) ~ (IOg(QQ/iu'z))Q'
Spectral Quark Model: Q?Fjo.,.,+(Q) ~ log(Q?/u?)

Precise fits in the whole Q2 range tricky
[see talks by Polyakov and Dorokhov]
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Regge models incorporate large N. and confinement
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Incomplete VMD
Radial Regge models
Dependence on momentum asymmetry

Incomplete VMD in a one-state model

Subtracted dispersion relation for F0.,.- saturated with one resonance:

1 2
Fo ) = 7 |- )

CLEO only: ¢ = 0.998(18), My = 777(44) MeV, x?/DOF = 0.54
all: ¢ = 0.986(2) , My = 748(14) MeV, x?/DOF = 0.7.

r
37
Z | | (CLEO and BaBar data
[ t I statistically compatible)
LLE 100
© of TW Il violated
Q*[Gev?| o < =, «=» T 9ol



radius squared:

1 d
b= | Fe @ dge ‘Q’]

Q2=0
Our fit: by = =% = 1.76(7) GeV >
\'s
PDG: b, = (1.76 & 0.22)GeV 2
CELLO: b, = (1.4 £ 0.8 + 1.4)GeV 2 [Meijer et al. 1992].

|Fy o (M3)/ Fy_y 5o (0)] = 0.014(2) < 0.17
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Incomplete VMD

Radial Regge models

Dependence on momentum asymmetry

Large-N. QCD involves tree-level

diagrams with infinitely many states,
including the radial excitations
(soft-wall AdS/CFT — Regge phenomenology)

Radial trajectory: M2 = MZ + an - need to model
residues/coupling constants
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First the charge form factor
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Incomplete VMD
Radial Regge models
Dependence on momentum asymmetry

Veneziano-Dominguez models

1 [e o]

r'2—b+n) 1

fo(t) = 561, MT%’,) T+ )02 —-b) M2 —t

0) =1, filt=-Q% ~(@)"
(approach used previously to describe the pion charge ff [ERA, WB 2008]

08 & G F
003 ® by=23 04
06 = LO
0.02 4 NLO
03
04 0.01
000 n 02
02 5 10....500-013
~0.01 ¢ ¢
N $ 01
0.0t
o 1 g s g
e 00 . . . . o 2
-02 . ~003fg o 3 4 . A 1o ~t[GeV?]

F(t) = —tFy (t), NLO (solid), LO
(dashed), TILAB (circles and squares),
Cornell (diamonds), lower curves: NLO
(solid) and (LO) pQCD

[m] [l = =

Residues in the pion charge ff
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The pQCD result is reached at very high scales
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Incomplete VMD
Radial Regge models
Dependence on momentum asymmetry

Regge fits to the transition ff

Q@ Fry (@) [MeV]

0 L L L

Q* [Gev?]

dashed line: Veneziano-Dominguez model b = 1.81 (TW Il satisfied)
dotted line: first pole separated and fixed b = 1.5 (TW Il satisfied)

solid line: single-state subtracted model (TW Il violated, works b%st!)
o

DA



100 -

@ Fryp (Q2) [MeV]

at low @Q? all models compatible

4

Q* [GeVv?|
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Incomplete VMD
Radial Regge models
Dependence on momentum asymmetry

Dependence on momentum asymmetry

BaBar kinematic setup —¢7 < 0.6 GeV? and —¢3 > 3 GeV? —

@ - ¢
qi + a3

|A] = ~0.9-097# 1

Significant for precision fits
IMVD Regge model becomes

o1 AME
F,,OW.Y*(_Q )= An2f, [1 -¢ <1 - 4M{4/ —|—4M‘2/Q2 +(1- Az)Q4):|

S =
2w = l A =1 (solid), 0.975 (dashed), and 0.95
% 50 I (dotted) yield, respectively,
o ¢ =0.986, 0.978, 0.974,
wof My = 748, 754, 768 MeV.

Q[Gev?) o =l =
BaBar, chiral quarks, Regge models

DA
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Summary

)

TW | always satisfied, TW Il not necessarily (e.g. GM model) -
subtractions possible

TW bounds, estimated with phenomenological parametrization of
the pion PDF, extend an order of magnitude above the BaBar data
(ineffective)

Constraint in the time-like region from the experimental bounds on
the rare Z — 7%y decay is comfortably satisfied in our models

Incomplete Vector-Meson Dominance with a single state reproduces
the data in the whole experimental range, 0 < Q2 < 35 GeV?.

Within the Regge approach with infinitely many states (cf. soft-wall
AdS/CFT) the data can be fitted with or without a subtraction
constant

The model fits are sensitive to the photon momentum asymmetry
parameter A, affecting, e.g., the fitted vector meson mass or other
parameters

WB BaBar, chiral quarks, Regge models
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