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Elastic scattering from ISR to LHC
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Spin-averaged elastic pp scattering amplitude

Parametrization by [Fagundes 2013] based on [Barger-Phillips 1974],
motivated by the Regge asymptotics:
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s-dependent (real) parameters are fitted (separately) to all known
differential pp cross sections for /s = 23.4, 30.5, 44.6, 52.8, 62.0, and
7000 GeV with x?/d.o.f ~ 1.2 — 1.7
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p parameter

Ref(s,t)
p(s,t) T f(s, )
B i+ p(s,t) .
f(S,t) - 1+p(5,t)2|f( 7t)|

From the optical theorem

4 4/mdoe/dt|i=
Wt s,0) = 1Y T2 D

1+ p(s,0)?

Utot(s) =

or

dael S t) |

p(s)* = p(s,0)* = b1

Utot(8)2

Up to a sign p(s,0) determined from the measured cross sections (sign
may be determined from the interference with the Coulomb amplitude)
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p parameter from the experiment
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We take a t-independent parameter p(s,t) = p(s)

Results similar for the Bailly et al. parametrization
p(s)
1-— t/to(s)

to(s) — position of the diffractive minimum
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How well it works?

V5 [GeV]  0e [mb] iy [mb] o [mb] B [GeV ] p
23.4 6.6 31.2 37.7 11.6 0.00
exp. 6.7(1) 322(1) 389(2)  11.8(3) 0.02(5)
200 10.0 40.9 50.9 14.4 0.13
exp. 54(4) 16.3(25)

7000 253 73.5 98.8 20.5 0.140

exp.  25.4(11) 73.2(13) 98.6(22)  19.9(3)  0.145(100)

(B is the slope parameter)
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Eikonal approximation

o0

fls,t) =Y (2L + 1) fi(p) Pi(cos 0)

=0
2 L o)
- / d2b h(b, 5) 70 = 2p? / bdb.Jy(bq)h (b, s)
™ 0

t=—q% q=2psin(0/2), bp=1+1/2+ O(s7Y), Pycosf) — Jo(gb)
(would need 40000 partial waves at the LHC!)

In the impact-parameter representation
hb,s) = o |1 =] = filp) + O™
D

The eikonal approximation works well for b < 2 fm and /s > 20 GeV

Procedure: f(s,t) — h(b,s) — x(b)...
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Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross
sections read

Otot = 4;Imf(s,0) = 4p / d*bImh(b, s) = 2 / d2b [1 _Reeix(b)]
va = [anlgs.or=w [ or= [ - o
Oin = Otot — Oel = /dzbnin(b) = /d2b [1 — e*QImX(b)}
The inelasticity profile
nin(b) = 4pImh(b, s) — 4p?|h(b, s)|*

satisfies 0 > ni,(b) < 1 (unitarity)
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Dip (or flattening) in the inelasticity profile at b =0

From top to bottom: /s = 14000, 7000, 200, 23.4 GeV

Dip: collisions more destructive at b > 0 than for head-on!
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Curvature at the origin of the inelasticity profile
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Transition around /s = 3 TeV
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Amplitude and eikonal phase
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2ph(b) = i [1 — X®)]
k(D) =Im[2ph(b)] = 1— cos(Re[y(b)]) e ")
Re[2p h(b)] sin (Re[x (b)]) e~ x(®)]

At the LHC Re[x(b)] > 7/2 — cos (Re[ D)) <0 — k() >1
In our model n;, (b) = 2k(b) — (1 + p?)k(b)?

dnC;ZQ(b) _ 2d§l§§) -1+ p2)k(b)] < 0if k() < 1_&7'02
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Quantum nature

Large real part of the eikonal phase — minimum develops at b = 0

Glauber (1959): The eikonal phase is additive in scattering of composite
objects. The (potentially small) eikonal phases of the constituents may add
up to a large eikonal phase of the whole composite object

Quantum interference is essential
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Gaussian model
[adaptation of the model by Dremin, 2014]
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Curvature of inelasticity profile at the origin
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— curvature changes sign when o = %atot!
Value at the origin:
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Cross sections
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o1 grows relatively faster than oy — ratio goes above 1/4 as s increases!

WB ( IFJ PAN & UJK) Hollowness UW 17 15 / 28



Gaussian model 2
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Data are in the central region of the abscissa

Hollowness effect expected to increase with the collision energy
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Inadequacy of folding models

In many models incoherent superposition is assumed, i.e., inelasticity of a
composite object is obtained from inelasticities of components:
() o / by dbap(Br + 5/2)w(Br — 5a)p(Bs — B/2)
= /dgblddbzp(gl)w(gl — 52),0(52)

- % / d*byd®ba[b - Vp(by)Jw(by — b2)[b- Vp(ba)] + ...

For a positive kernel w(by — by) both integrals are necessarily positive —

nin(b) = a® — B2b? has a local maximum at b = 0, in contrast to the
phenomenological hollowness result

(folding models usually take w(b; — by) o d(by — b))
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Remarks

Note that the “no hollowness from folding” result holds for any shape of
the colliding proton, i.e., the distribution of elementary scatterers p(gl’g)
can have any form. Even collision of two donuts resets in most damage
when their CM'’s are aligned

Inalasticty of a collision of two triangle-like (from quarks) protons, if
obtained from folding, will not exhibit hollowness

(above statements also hold for the case of correlated wave functions
yielding some one-body density p(b;2))

Hollowness is not a feature of the nucleon itself, but of the scattering
process

WB ( IFJ PAN & UJK) Hollowness uw 17 18 / 28



2D vs 3D opacity — geometric idea

Projection of 3D on 2D covers up the hollow: f(z,y,z) vs ffooo dzf(z,y, z)

The hollow is covered up
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Equivalent optical potential — invariant mass method

Phenomenological method [Allen, Payne, Polyzou 2000] introduces the
total squared mass operator for the pp system:

M2 =prp, Y a4+ ME)+V

P# — total four-momentum, p — CM three-momentum of each nucleon,
My — nucleon mass, V — invariant interaction, determined in the CM frame
by matching in the non-relativistic limit to a non-relativistic potential, i.e.,
V = 4U = 4MyV . Relativistic Schrédinger equation M2V¥ = s¥
transforms into an equivalent non-relativistic Schrédinger equation

(=V24+U)U = (s/4 — M%)V = p*T

with the reduced potential U = MyV = ReU + iImU (to be determined
by inverse scattering)
p — CM momentum of the proton

No complication of spin/noncentrality (5 complex Wolfenstein amplitudes)
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Eikonal limit and optical potential

As in WKB, we solve —12V2W = (h2p? — 2mV )W with & = Ae'S/h

(VS)? — ih¥2S = h?p® — 2mV

VS/h=+/p? —2mV/h?

For p > other scales

m z
S/h=pz— 2 / dz'V (2")

—0o0

(transverse dynamics frozen)
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Inverse scattering and optical potential

Hence in the eikonal approximation one has

-

U(b, z) = exp [ipz - QZp/ U(l_;, z')dz']

0= [T oA=L [T

_% —00 b T2—b2

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can
be inverted:

Utr) = v =2 [ h db;/(i)ﬂ
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On-shell optical potential

From the definition of the inelastic cross section
1
7= [ U@ 0@
b

— density of inelasticity is proportional to the absorptive part of the optical
potential times the square of the modulus of the wave function. One can
identify the on-shell optical potential (related to Bethe-Salpeter methods)

Im W (%) = Im U (Z)| (&) >
Upon z integration,

1 —
_Z / dzIm W (b, 2) = njn(b)
p

Inversion yields

!/

() =2 [" v e
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Results of the inverse scattering

MnV (r), inelasticity profile — ImW (r)

eikonal phase — U(r)
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The hollow and the edge
The edge function is defined as a combination [Block et al. 2014, Rosner 2015]

o7 (b) — 2061(b) = 0in(b) — cer(b). In a general case

in(b) — ga(b) = 2 mX(®) {cos(Rex(b)) - e_ImX(b)} .
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The fact that 0i,(b) < gei(b) at low b at the LHC stem from the same quantum

mechanism as the hollowness effect
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Conclusions

Hollowness transition inferred from the parametrization of the data,
seen in n;y,(b) for s > 3 TeV

Quantum effect, which can be related to compositeness of the proton
and the rise of the real part of the eikonal phase above 7/2. It is a
gradual process

Hot-spot model [Alba Soto+Albacete 2016] — a dynamic realization
Effect impossible to obtain incoherently by folding the absorptive parts
from constituents (uncorrelated or correlated)— change of working
assumptions in many models

2D — 3D greatly magnifies the hollowness effect (flat in 2D — hollow
in 3D), interpretation via optical potential in a relativized problem

Qualitatively similar hollowness effect appears in low-energy
(~500 keV) n-A scattering — less absorption for head-on collisions
than for peripheral! ImV (r) ~ d/dr ReV (r)
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Fourier-Bessel transform
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(TOTEM extends far enough)
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from a TOTEM analysis
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