Throwing triangles against the wall:

ultrarelativistic heavy-ion collisions detecting shape of light nuclei

Wojciech Broniowski

Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce

University of Warsaw, 16 October 2014

[research with Enrique Ruiz Arriola, Piotr Bożek, & Maciej Rybczyński]

UW 2014

Instead of outline

Details may be found in:

¹²C: WB & E.Ruiz Arriola, PRL 112 (2014) 112501 (News and Commentary in Physics, An Untested Window into Nuclear Structure, http://journals.aps.org/prl/)

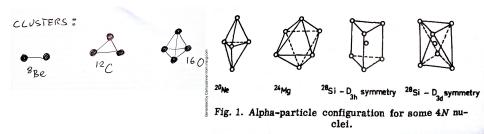
³He: Piotr Bożek & WB, arXiv:1409.2160

Two phenomena are related:

lpha clustering in light nuclei

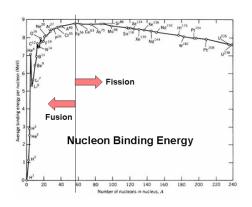
harmonic flow in ultra-relativistic nuclear collisions

Surprising link:


lowest-energy ground-state structure \longleftrightarrow highest energy reactions

- New method of investigating many-particle nuclear correlations
- Another test of collective dynamics/harmonic flow

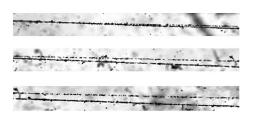
lpha clusters


Some history

David Brink: After Gamow's theory of α -decay it was natural to investigate a model in which nuclei are composed of α -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like ⁸Be, ¹²C, ¹⁶O ... were composed of α -particles

Generated by CamScanner from intsig.com

Binding



 α very tightly bound

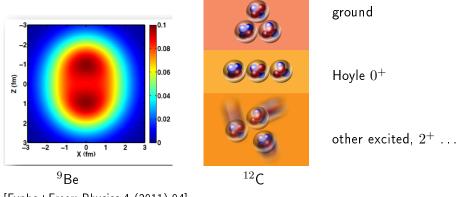
Fragmentation

Evidence from dissociation in nuclear track emulsions

[Zarubin 2013 (BECQUEREL)]

Example: dissociation of ⁷Be (energy of a few A GeV)

(neutrons not specified)


channel	$ ^4$ He $+^3$ He	3 He $+^3$ He	4 He $+2p$	4 He+ d + p	3 He $+2p$	3 He+ d + p	$^3\mathrm{He}{+}2d$	3 He+ t + p	3p+d	6 Li $+p$
N	30	11	13	10	9	8	1	1	2	9
%	31	12	14	11	10	9	1	1	2	10

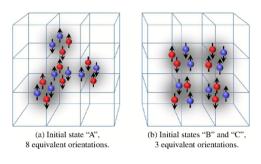
Numerous ongoing experiments (GANIL, Osaka, ...)

Was the cluster there or is it created at break-up?

These studies cannot reveal the geometry (cluster arrangement)

lpha clusters in light nuclei – theoretical calculations

[Fynbo+Freer: Physics 4 (2011) 94]


How can we detect the α clusters in the ground state? What is their spatial arrangement? Assessment of n-body correlations (one-body not enough)

[Recent status: SOTANCP3 Conference, Yokohama, May 2014]

$16\overline{O}$

Ab initio calculations of ^{16}O with chiral NN force

 \rightarrow strong α clusterization [Bochum-Jülich, PRL 112 (2014) 102501]

ground state

excited

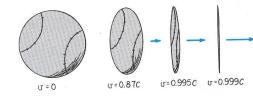
Computational techniques

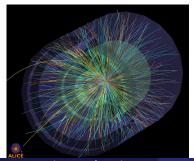
Funaki et al.: certain states in self-conjugated nuclei ... can be described as product states of α particles, all in the lowest 0S state. We define a state of condensed α particles in nuclei as a bosonic product state in good approximation, in which all bosons occupy the lowest quantum state of the corresponding bosonic mean-field potential (α BEC)

Another approach: Fermionic Molecular Dynamics (FMD)

Quantum Variational Monte Carlo (with 2- and 3-body forces) for A=2-12 [R. Wiringa et al.,]

All approaches \rightarrow light nuclei have clusters

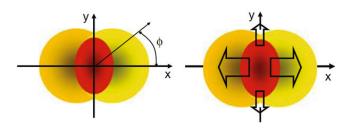

Goal (not yet accurately reached):


reproduce ground-state energy, excitation spectrum, EM form factor, ...

Flow

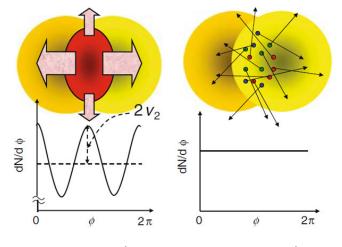
Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

- Lorentz contraction
- Collision: essentially instantaneous passage, frozen configuration
- Reduction of the ground-state wave function of the nucleus (like measurement)



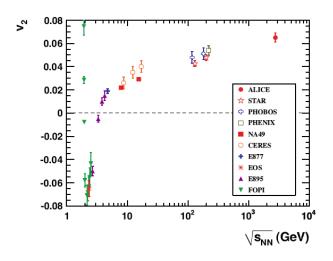
 "Development": detection of particles in the transverse direction

WB (IFJ PAN & UJK)


Phenomenon of flow

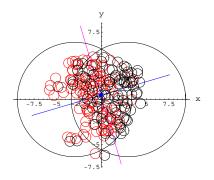
Quark-gluon plasma is formed!

"Initial shape - final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles - follows from collectivity


Elliptic flow

[ALICE]

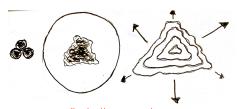
$$dN/d\phi = A\left(1 + 2\sum_{n} v_n \cos[n(\phi - \Psi_n)]\right)$$


Major observation in HIC – signature of QGP

[ALICE]

Harmonic flow

Wounded nucleons experienced at least one inelastic collision [Białas, Błeszyński & Czyż]



- Initial fireball is asymmetric in the transverse plane from
 geometry 2) fluctuations
- collectivity! flow generated
- Strong elliptic flow, triangular flow (in Au+Au entirely from fluctuations), higher-order harmonic flow

Merge the two ideas (α 's and flow) \rightarrow

From α clusters to flow in relativistic collisions

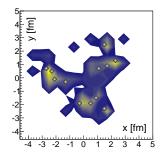
 α clusters \to asymmetry of shape \to asymmetry of initial fireball \to \to hydro or transport \to collective harmonic flow

nuclear triangular geometry o fireball triangular geometry o triangular flow

What are the signatures, chances of detection? (some blurring by fluctuations)
"Easy snap-shot but difficult development"

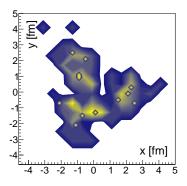
Described later: 3 He-Au at RHIC [PHENIX proposal, 2013] The case of 12 C is more promising, as it leads to more abundant fireballs.

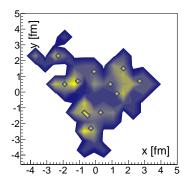
Our making ¹²C

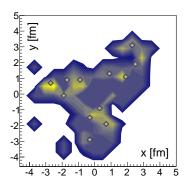

Three α 's in a triangular arrangement, generate nucleon positions with Monte Carlo, parameters (size of the cluster, distance between clusters) properly adjusted (fit one-body radial distributions from other calculations, fit EM form factor)

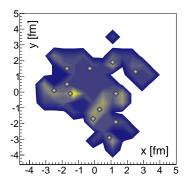
$^{12}\text{C-}^{208}\text{Pb}$ – single event

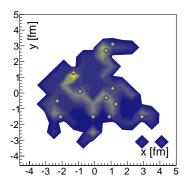
Why ultra-relativistic?

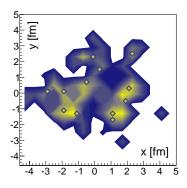

Reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

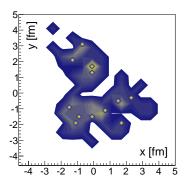


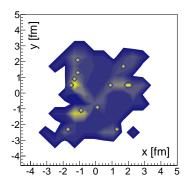

wounding range determined by $\sigma_{
m NN}^{
m inel}$


Here $N_w > 70$ - flat-on orientation (for the moment)


Imprints of the three lpha clusters clearly visible







Eccentricity parameters (event-by-event)

We need quantitative measures of deformation (heavily used in heavy-ion analyses)

Eccentricity parameters ϵ_n (Fourier analysis)

$$\epsilon_n e^{in\Phi_n} = \frac{\int dx dy \, \rho(x,y) \rho^n e^{in\phi}}{\int dx dy \, \rho(x,y) \rho^n}$$

n=2 - ellipticity, n=3 - triangularity, ...

 Φ_n – angle of the principal axes $\rho = \sqrt{x^2 + y^2}$, $\tan \phi = y/x$ $\rho(x,y)$ – fireball density

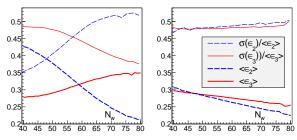
Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Geometry vs multiplicity correlations in 12 C-Pb

Two extreme cases of angular orientation

cluster plane parallel or perpendicular to the transverse plane:


flat-on

higher multiplicity higher triangularity lower ellipticity

sidewise

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

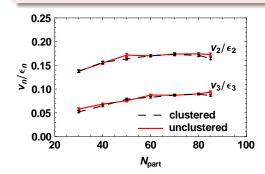
clustered

unclustered

Clusters: (qualitative signal!)

When
$$N_w \nearrow$$
 then $\langle \epsilon_3 \rangle \nearrow$ and $\langle \epsilon_2 \rangle \searrow$

and
$$\sigma(\epsilon_3)/\langle \epsilon_3 \rangle = \sigma(v_3)/\langle v_3 \rangle \searrow$$
, $\sigma(\epsilon_2)/\langle \epsilon_2 \rangle = \sigma(v_2)/\langle v_2 \rangle \nearrow$


No clusters:

similar behavior for n=2 and n=3

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. Linear response:

 $v_n \sim \epsilon_n$, response grows with multiplicity

[wounded nucleon model + Bożek's 3+1 viscous hydro ($\eta/s=0.08$, $au_0=0.6$ fm) + THERMINATOR ($T_f=150$ MeV)]

"Hydro without hydro" - linear response to fluctuations

We have to a very good approximation

$$v_n = \kappa_n \epsilon_n, \quad n = 2, 3, \dots$$

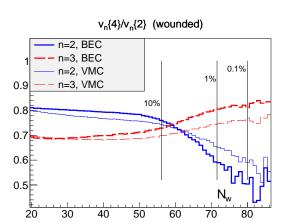
(κ_n depends on mutiplicity and hydro details)

Equality of scale-independent ratios, e.g., $\sigma(\epsilon_n)/\langle \epsilon_n \rangle = \sigma(v_n)/\langle v_n \rangle$

Cumulant moments: $\epsilon_n\{2\}^2 = \langle \epsilon_n^2 \rangle$, $\epsilon_n\{4\}^4 = 2\langle \epsilon_n^2 \rangle - \langle \epsilon_n^4 \rangle$

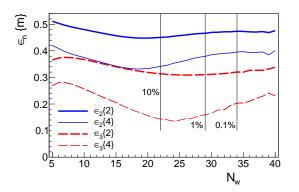
Ratio's insensitive to response:

$$\frac{v_n\{m\}}{v_n\{2\}} = \frac{\epsilon_n\{m\}}{\epsilon_n\{2\}}, \quad m = 4, 6, \dots$$


(infer info on flow from just the eccentricities, no hydro!)

Fluctuations only: ratio drops with N_w ($\sim N_w^{1/m-1/2}$) Geometry: ratio tends to 1 from below as $N_w \to \infty$

Ratios of cumulant moments

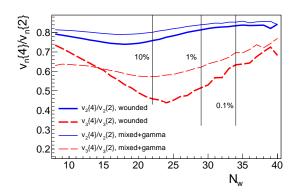

³He-Au

³He-Au

(being presently analyzed by PHENIX)

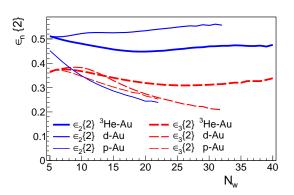
[hydro: J. Nagle et al., arXiv:1312.4565] [hydro without hydro: Bożek & WB, arXiv:1409.2160]

Sampling from ab initio MC Green's function method [Carlsson & Schiavilla 1998]


³He-Au

(being presently analyzed by PHENIX)

[hydro: J. Nagle et al., arXiv:1312.4565] [hydro without hydro: Bożek & WB, arXiv:1409.2160]


Sampling from ab initio MC Green's function method [Carlsson & Schiavilla 1998]

Large- N_m behavior exhibits both geometric triangularity and ellipticity! (to be confirmed by the experiment!)

p, d, ³He

Conclusions

Nuclear structure from ultra-relativistic heavy ion collisions

Snapshots of the ground-state wave function Spatial correlations in the ground state \rightarrow geometric harmonic flow Signatures in clustered ¹²C-²⁰⁸Pb collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Anticorrelation of ellipticity and triangularity
- Very clear signals from event-by-event scaled standard deviation or ratios of cumulant moments
- Effect persists in forward and backward rapidities
- ¹²C lead to larger/more collective fireball than ³He

Extensions: ^{7,9}Be, ¹⁶O

Experiments needed!

Data (RHIC, NA61@SPS) will allow to place constrains on the spatially deformed structure of the light projectiles and/or verify the fireball formation models

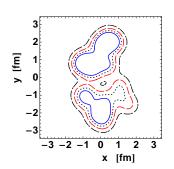
UW 2014

Back-up

Intrinsic distributions

Ground state of ^{12}C is a 0^+ state (rotationally symmetric wave function). The meaning of *deformation* concerns multiparticle correlations between the nucleons

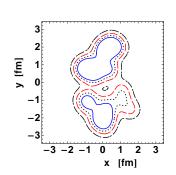
Superposition over orientations:

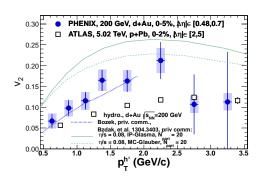

$$|\Psi_{0+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi} \int d\Omega \Psi_{\rm intr}(x_1,\ldots,x_N;\Omega)$$

The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_n^{\rm intr}(\vec x) = \langle f(R(-\Phi_n)\vec x) \rangle$. Brackets indicate averaging over events and $R(-\Phi_n)$ is the inverse rotation by the principal-axis angle in each event

Digression: d-A by Bożek

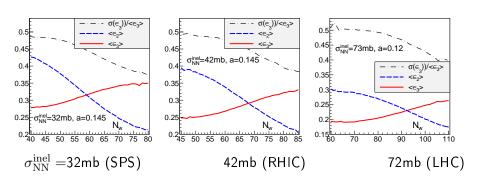
The deuteron has an intrinsic dumbbell shape with very large deformation: ${\rm rms} \simeq 2~{\rm fm}$


Initial entropy density in a d-Pb collision with $N_{
m part}=24$ [Bożek 2012]

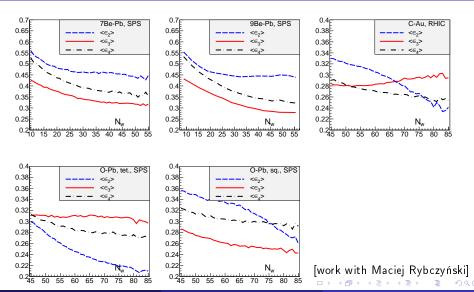


Digression: d-A by Bożek

The deuteron has an intrinsic dumbbell shape with very large deformation: rms $\simeq 2~{\rm fm}$


Initial entropy density in a d-Pb collision with $N_{
m part}=24$ [Bożek 2012]

Resulting large elliptic flow confirmed with the later RHIC analysis.


Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

Other systems

(distributions matched to Wiringa's et al. radial densities)

WB (IFJ PAN & UJK)