Hydrodynamics of p-Pb collisions

Wojciech Broniowski

CEA Saclay & IFJ PAN Cracow & UJK Kielce

Heavy Ion Seminar Saclay, 16 May 2013

[Piotr Bożek & WB, PLB 718 (2013) 1557, 720 (2013) 250, arXiv:1304.3044]

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions

- Collective flow
- Jet quenching

Flow manifests itself in harmonic components in the momentum spectra, certain features in correlation data (ridges), interferometry (femtoscopy), ...

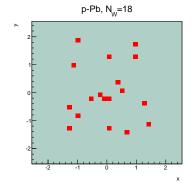
- Bozek 2010: p+A and p+p in hydro
- Ridges discovered in small systems, p+A and high-multiplicity p+p

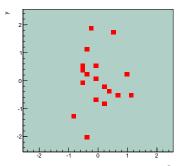
3-stage approach

Our three-phase approach: initial \rightarrow hydro \rightarrow statistical hadronization

- Initial phase Glauber model
- **Hydrodynamics** 3+1 D viscous event-by-event
- Statistical hadronization

Main questions:

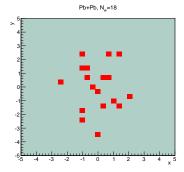

Are the central p-Pb collisions collective?


What is the nature of the initial state? What are the limits on applicability of hydrodynamics?

Snapshots of initial Glauber condition in central p+Pb

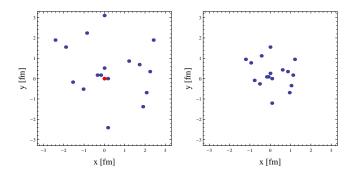
Typical transverse-plane configuration of centers of the participant nucleons in a p+Pb collision generated with GLISSANDO

5% of collisions have more than 18 participants, rms $\sim 1.5~\text{fm}$ – large!



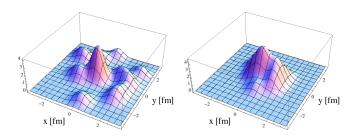
Snapshot of peripheral Pb+Pb

Most central values of N_w in p-Pb would fall into the 60-70% or 70-80% centrality class in Pb+Pb

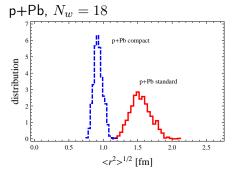

Pb+Pb: c=60-70%
$$\equiv 22 \leq N_w \leq 40$$
, c=70-80% $\equiv 11 \leq N_w \leq 21$

in Pb+Pb larger size than in p+Pb

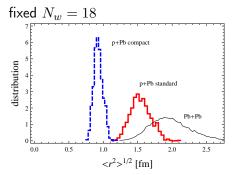
Positions of sources


placed in the centers of the colliding nucleons or in the centers-of-mass of the colliding pairs

shrinkage by a factor of 2


Smearing

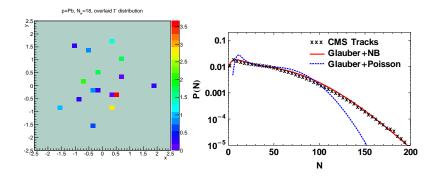
Gaussian smearing with width 0.4 fm (physical effect)


This is fed into e-by-e hydro as initial condition

Size in p+Pb

red - centers of participants, blue - center-of-mass of colliding pairs

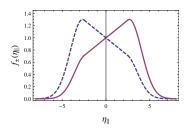
Size in p+Pb vs Pb+Pb



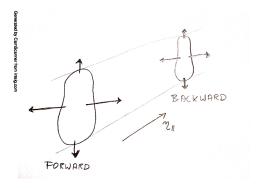
smaller size in p+Pb \rightarrow larger entropy density \rightarrow more rapid expansion

All in all, initial conditions in most central p+Pb not very far from peripheral Pb+Pb

Multiplicity distribution


To reproduce the multiplicity distribution of the most central events in p+Pb one needs to fluctuate the strength of the Glauber sources. We overlay the Gamma distribution (Gamma + Poisson = negative binomial). At statistical hadronization Poissonian fluctuations are generated

Initial condition in spatial rapidity

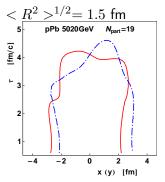

$$f(\eta_{\parallel})_{\pm} = \exp\left(-\frac{(|\eta_{\parallel}| - \eta_0)^2}{2\sigma_{\eta}^2}\theta(|\eta_{\parallel}| - \eta_0)\right)\frac{(y_b \pm \eta_{\parallel})}{y_b}\theta(y_b \pm \eta_{\parallel}),$$

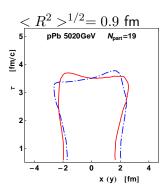
 $\eta_0=2.5,~\sigma_\eta=1.4,~y_b=8.58$ - beam rapidity, +/- indicates the forward/backward moving participant nucleons

[Bialas & Czyż 2005, Adil & Gyulassy 2005, Gazdzicki & Gorenstein 2006, Bzdak 2009, ...]

Assumed factorization of the transverse and longitudinal distributions

alignment of F and B event planes (can be checked experimentally) collimation of flow at distant longitudinal separations \rightarrow ridges!

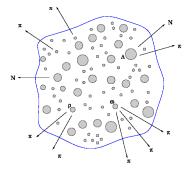

Surfers - the near-side ridge



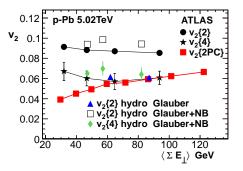
Hydrodynamics [Bożek 2011]

3+1 D viscous event-by-event hydrodynamics

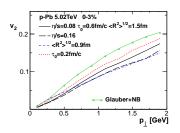
- $au_{
 m init} = 0.6 \ {
 m fm/c}, \ \eta/s = 0.08 \ {
 m (shear)}, \ \zeta/s = 0.04 \ {
 m (bulk)}$
- freezeout at $T_f = 150 \text{ MeV}$
- average initial temperature in the center of the fireball $T_i=242$ MeV ($< R^2>^{1/2}=1.5$ fm), or 319 MeV ($< R^2>^{1/2}=0.9$ fm)
- lattice spacing of 0.15 fm (thousands of CPU hours)
- realistic equation of state (lattice + hadron gas [Chojnacki & Florkowski 2007]), viscosity necessary for small systems

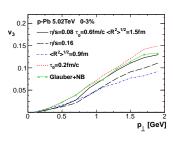


isotherms at freeze-out $T_f=150\ \mathrm{MeV}$ for two sections in the transverse plane

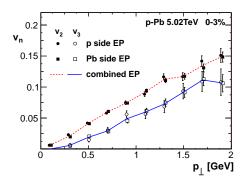

evolution lasts about 4 fm/c - shorter but more rapid than in A+A

Statistical Hadronization



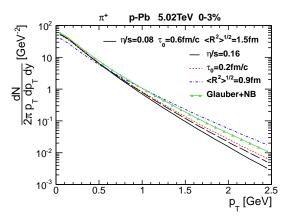

Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR), transverse-momentum conservation approximately imposed, local charge conservation included

LHC: v_2 vs ATLAS


v_2 and v_3 vs p_T

v_2 and v_3 from the scalar-product method

[STAR 2002, Luzum & Ollitrault 2012]

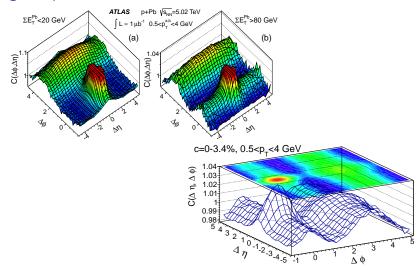

v_2 and v_3

cuts:
$$|\eta| < 2.5, \ 0.3 < p_T < 5 \ {\rm GeV}$$
 $< R^2 >^{1/2} = 1.5 \ {\rm fm}$

	c=0-3.4%	c=3.4-7.8%
Glauber+Poisson		
$v_2\{2\}^2 [10^{-3}]$	3.70(1)	3.78(2)
$v_3\{2\}^2 [10^{-3}]$	1.04(1)	0.95(1)
$v_2\{4\}^4 [10^{-6}]$	-0.4(4)	1.83(5)
Glauber+NB		
$v_2\{2\}^2 [10^{-3}]$	8.18(12)	8.24(10)
$v_3\{2\}^2 [10^{-3}]$	1.52(8)	1.51(6)
$v_2\{4\}^4 [10^{-6}]$	15(7)	16(6)

more fluctuations \rightarrow more harmonic flow $v_2\{4\}$ very sensitive (fluctuations)

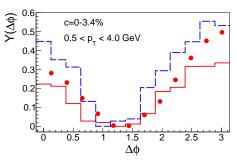
p_T spectra of π^+


$$< R^2 >^{1/2} = 1.5$$
 fm case, $|\eta| < 2.4$: $< p_T >_{\pi} = 0.48$ GeV, $< p_T >_{K} = 0.72$ GeV, $< p_T >_{p} = 0.99$ GeV (mass ordering)

Definition of the 2D correlation function

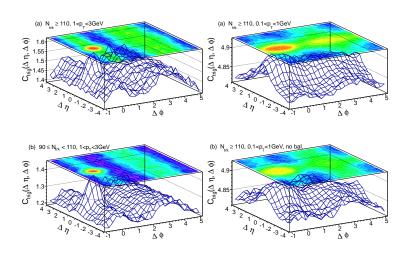
$$C(\Delta \eta, \Delta \phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta \eta, \Delta \phi)}{N_{\rm mixed}^{\rm pairs}(\Delta \eta)} = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

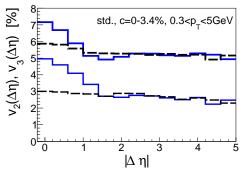
(more convenient than the "per-trigger" correlations)


Ridge in p-Pb, ATLAS

Projection on $2 \leq |\Delta \eta| \leq 5$, ATLAS

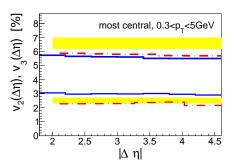
$$Y(\Delta\phi) = \frac{\int B(\Delta\phi)d(\Delta\phi)}{N}C(\Delta\phi) - b_{\text{ZYAM}}$$


The near-side ridge from our model:


red -
$$< R^2 >^{1/2} = 1.5$$
 fm, blue - $< R^2 >^{1/2} = 0.9$ fm

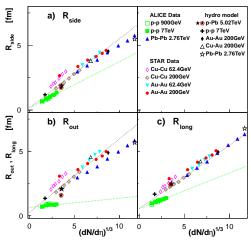
[CGC-based calculation: Dusling & Venugopalan]

Ridge in p-Pb


Flow from correlations (two-particle cumulants)

blue - unlike-sign pairs, black - like-sign pairs ($< R^2 >^{1/2} = 1.5 \ {\rm fm}$ case)

LHC: $v_n\{2, |\Delta \eta| > 2 \text{GeV}\}$ vs CMS


top - v_2 , bottom - v_3

yellow - CMS blue - standard (<
$$R^2$$
 > $^{1/2}$ = 1.5 fm) red - compact (< R^2 > $^{1/2}$ = 0.9 fm)

HBT radii

Interferometric radii due to Bose-Einstein correlations - measure of the size of the system at freeze-out $\,$

Conclusions

In hydro there is flow! Is there collectivity in small systems?

- \rightarrow collective dynamics is compatible with high-multiplicity LHC data for p-Pb
 - $lue{v}_n$ coefficients measured in p-Pb reproduced semiquantitatively
 - Model 2-D correlations exhibit the two ridges, in particular the near-side ridge ("surfers")
 - Interferometric radii for p+Pb are close to the A+A line, away from the p+p line - way to distinguish, will be verified shortly by ALICE
 - Other effects (jets, corona, ...)
 - p+p, other approaches
 - Other models of the initial collision [Bzdak et al. 2013, CGC+hydro]