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Outline

Remarks on light-heavy collisions
Collisions with polarized light targets (deuteron)
Collisions with light clustered nuclei (16O)
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Remarks
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Shape – flow transmutation

smaller → faster

Any (copious) rescattering will do (hydro, transport)!
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Collimation from the Doppler effect

Emission from a fast moving
element of fluid
Collimation of hadrons
(increasing with mass)
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Multi-particle correlations in the azimuth are used in the cumulant or other
methods to extract the flow coefficients with reduced the non-flow
contamination (from jets, resonance decays, . . . )

[Borghini, Ollitrault 2001]
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Hydro without hydro

Approximately vn = κnεn, (n = 2, 3)

κn depend on the collision energy, multiplicity, viscosity . . .
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Au+Au@200 GeV [Niemi, Denicol, Holopainen, Huovinen 2012]
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Hydro without hydro

Approximately vn = κnεn, (n = 2, 3)

κn depend on the collision energy, multiplicity, viscosity . . .
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Tf = 150 MeV (left) and 170 MeV (right) [Nagle, Adare, Beckman, Koblesky, Orjuela
Koop, McGlinchey, Romatschke, Carlson, Lynn, McCumber, PRL 113 (2014) 112301]
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Hydro without hydro

Approximately vn = κnεn, (n = 2, 3)

κn depend on the collision energy, multiplicity, viscosity . . .

Allows us to construct response-independent coefficients, e.g.,

vn{4}/vn{2} ' εn{4}/εn{2}
which probe the geometry-fluctuation interplay
(more geometry → vn{4}/vn{2} goes up)

[Bożek WB, Ruiz Arriola, Rybczyński, 2014,
Giacalone, Noronha-Hostler, Ollitrault, 2017]
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Ridge

Together with the transverse-longitudinal factorization, the near-side ridge
indicates collectivity

understanding of the ridges →
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Factorization of the transverse and longitudinal distributions

left-moving participants strings right-moving participants

Approximate (up to fluctuations) alignment of F and B event planes
Collimation of flow at very distant longitudinal separations → ridges!
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Surfers - the near-side ridge

Collimated even if separated by a mile!
Something had to create the wave!
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Torque (decorrelation) in p-Pb

String breaking essential to describe torque in p-Pb
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• cf. Huang on Monday, Bożek and Qin on Tuesday

Not covered: longitudinal fluctuations
anm coefficients
[Bzdak, Teaney, 2012, Jia, Radhakrishnan, Zhou, 2016, Monnai, Schenke, PLB 752
(2016) 317, PB, WB, Olszewski, Phys.Rev. C92 (2015) 054913, ATLAS]
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p-A, how small?
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Initial fireball in p-Pb vs Pb-Pb

Sample transverse-plane configuration of centers of the participant nucleons in a
p+Pb collision from GLISSANDO
5% of collisions have more than 18 participants, rms ∼ 1.5 fm – quite large!

p-Pb@5.02 TeV, NW=18 Pb-Pb@2.76 TeV, NW=18

4fm

Size reflects the NN inelasticity profile
Most central values of Nw in p-Pb would fall into the 60-70% or 70-80%
centrality class in Pb+Pb
Pb+Pb: c=60-70% ≡ 22 ≤ Nw ≤ 40, c=70-80% ≡ 11 ≤ Nw ≤ 21
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Hydro evolution of the p-Pb fireball

Not so small!
pPb 5020GeV Npart=19

-4 -2 0 2 4

1

2

3

4

5

x HyL @fmD

Τ
@f

m
�
c
D

isotherms at freeze-out Tf = 150 MeV
(for two sections in the transverse plane)

evolution lasts about 4 fm/c – shorter but more rapid than in Pb+Pb
strong gradients → essential role of viscosity
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Mass hierarchy in p-A
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[PB, WB, Torrieri, PRL 111 (2013) 172303]
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Harmonic flow in p-A
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Interferometry
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[PB, Bysiak, 2017]
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d-A
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d-A

[pioneered by Bożek 2012]
intrinsic dumbbell shape with large deformation: rms ' 2 fm

initial entropy density in a d-Pb collision with Npart = 24
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Resulting large elliptic flow confirmed with the later RHIC analysis
(geometry + fluctuations)
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Flow hierarchy in small systems

[PHENIX, 2018]
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Controlling the geometry:
A – polarized d collisions

WB Hydro in small systems 50/80 20 / 32



Polarized d+A collisions

Admixture of the D-wave allows us to control the geometry! Small but
measurable effect

[PB, WB, PRL 121 (2018) 202301]
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Ellipticity of the fireball relative to polarization axis

GLISSANDO:
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Predictions

one-body (!)

dN

dφ
∝ 1+2v2 cos [2(φ− ΦP )]

v2 ' kε2, k ∼ 0.2
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For j = 1 nuclei the tensor polarization is

Pzz = n(1) + n(−1)− 2n(0)

v2{ΦP } ' k εj3=±12 {ΦP }Pzz, −1.5 ≤ Pzz ≤ 0.7

−0.5% . v2{ΦP } . 1%

One-particle distribution – can be measured precisely! Random fluctuations cancel
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Prospects at fixed target experiments

AFTER@LHC – injecting a polarized gas target into the Pb beam

2.76A TeV Pb beam on a fixed target → √sNN = 72 GeV, at LHCb
−2.3 < ηCM < 0.7

[C. Barschel, Ph.D. thesis, (2014)
R. Aaij et al. (LHCb), JINST 9, P12005 (2014), arXiv:1410.0149]
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Estimates based on the quadrupole moment

j j3 〈r2〉1/2ch [fm] Q2 [fm2] − 3Q2

4Z〈r2〉 [%]
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The lowest possible j is 1 (no effect for 3He or tritium, where j = 1
2)
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Light clustered nuclei

with E. Ruiz Arriola, M. Rybczyński, M. Piotrowska
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12C-A – role of α clusters

“Futurology” from [WB, Ruiz Arriola, PRL 112 (2014) 112501]
Nuclear structure from ultra-relativistic collisions!

Probe to what degree 12C is made of three α’s

Specific features of the 12C collisions with a “wall” of Pb or Au:

Generated by CamScanner from intsig.com

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity lower multiplicity
higher triangularity lower triangularity
lower ellipticity higher ellipticity

WB Hydro in small systems 50/80 27 / 32



12C - 197Au,
√
sNN = 200 GeV

[PB, WB, Ruiz Arriola, Rybczyński. PRC90 (2014) no.6, 064902]
→ effects of geometric arrangement for most central
vn{4}/vn{2} a good response-invariant probe (recall vn ' κεn, n = 2, 3))
[see also Giacalone, Noronha-Hostler, Ollitrault, PRC95 (2017) 054910]

         wN
30 40 50 60 70 80

{2
}

n
/v

{4
}

nv

0.5

0.6

0.7

0.8

0.9

1

n=2 (BEC)
n=3 (BEC)
n=2 (uniform)
n=3 (uniform)

10%  1% 0.1%

 

WB Hydro in small systems 50/80 28 / 32



16O - 16O

cosidered seriously in future runs at RHIC and the LHC
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Summary
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Summary

Matter flows in small systems
Polarized deuteron - controlled geometry
Clustered small nuclei in light-heavy collisions – insight into nuclear
structure from harmonic flow
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Congratulations, Peter!!!
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