Opportunities with small systems

Wojciech Broniowski and Piotr Bożek

Half a century of high-energy physics – symposium on the occasion of the honorary doctorate and 80th birthday of Peter Seyboth

UJK, 18 October 2019

Outline

- Remarks on light-heavy collisions
- Collisions with polarized light targets (deuteron)
- \bullet Collisions with light clustered nuclei ($^{16}{
 m O}$)

Remarks

Shape – flow transmutation

Any (copious) rescattering will do (hydro, transport)!

WB Hydro in small systems 50/80 4 / 32

Collimation from the Doppler effect

- Emission from a fast moving element of fluid
- Collimation of hadrons (increasing with mass)

Multi-particle correlations in the azimuth are used in the cumulant or other methods to extract the flow coefficients with reduced the non-flow contamination (from jets, resonance decays, ...)

[Borghini, Ollitrault 2001]

Hydro without hydro

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

 \bullet κ_n depend on the collision energy, multiplicity, viscosity . . .

Au+Au@200 GeV [Niemi, Denicol, Holopainen, Huovinen 2012]

Hydro without hydro

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

 \bullet κ_n depend on the collision energy, multiplicity, viscosity . . .

 $T_f=150$ MeV (left) and 170 MeV (right) [Nagle, Adare, Beckman, Koblesky, Orjuela Koop, McGlinchey, Romatschke, Carlson, Lynn, McCumber, PRL 113 (2014) 112301]

Hydro without hydro

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

ullet κ_n depend on the collision energy, multiplicity, viscosity \dots

Allows us to construct response-independent coefficients, e.g.,

$$v_n\{4\}/v_n\{2\} \simeq \epsilon_n\{4\}/\epsilon_n\{2\}$$

which probe the geometry-fluctuation interplay (more geometry $\rightarrow v_n\{4\}/v_n\{2\}$ goes up)

[Bożek WB, Ruiz Arriola, Rybczyński, 2014, Giacalone, Noronha-Hostler, Ollitrault, 2017]

Ridge

Together with the transverse-longitudinal factorization, the near-side ridge indicates collectivity

understanding of the ridges \rightarrow

Factorization of the transverse and longitudinal distributions

left-moving participants

strings

right-moving participants

Approximate (up to fluctuations) alignment of F and B event planes Collimation of flow at very distant longitudinal separations \rightarrow ridges!

Surfers - the near-side ridge

Collimated even if separated by a mile! Something had to create the wave!

Torque (decorrelation) in p-Pb

String breaking essential to describe torque in p-Pb

• cf. Huang on Monday, Bożek and Qin on Tuesday

Not covered: longitudinal fluctuations

 a_{nm} coefficients

[Bzdak, Teaney, 2012, Jia, Radhakrishnan, Zhou, 2016, Monnai, Schenke, PLB 752 (2016) 317, PB, WB, Olszewski, Phys.Rev. C92 (2015) 054913, ATLAS]

p-A, how small?

Initial fireball in p-Pb vs Pb-Pb

Sample transverse-plane configuration of centers of the participant nucleons in a p+Pb collision from GLISSANDO

5% of collisions have more than 18 participants, rms $\sim 1.5~\text{fm}$ – quite large!

Size reflects the NN inelasticity profile

Most central values of N_w in p-Pb would fall into the 60-70% or 70-80% centrality class in Pb+Pb

Pb+Pb: c=60-70% $\equiv 22 \le N_w \le 40$, c=70-80% $\equiv 11 \le N_w \le 21$

Hydro evolution of the p-Pb fireball

Not so small!

isotherms at freeze-out $T_f=150~{\rm MeV}$ (for two sections in the transverse plane)

- evolution lasts about 4 fm/c shorter but more rapid than in Pb+Pb
- strong gradients → essential role of viscosity

Mass hierarchy in p-A

[PB, WB, Torrieri, PRL 111 (2013) 172303]

Harmonic flow in p-A

[PB, WB, PRC 88 (2013) 014903]

Interferometry

d-A

[pioneered by Bożek 2012]

intrinsic dumbbell shape with large deformation: rms $\simeq 2$ fm

initial entropy density in a d-Pb collision with $N_{\mathrm{part}}=24$

Resulting large elliptic flow confirmed with the later RHIC analysis (geometry + fluctuations)

Flow hierarchy in small systems

[PHENIX, 2018]

Controlling the geometry: A – polarized d collisions

Polarized d+A collisions

Admixture of the D-wave allows us to control the geometry! Small but measurable effect

[PB, WB, PRL 121 (2018) 202301]

Ellipticity of the fireball relative to polarization axis

GLISSANDO:

Predictions

one-body (!)

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos\left[2(\phi - \Phi_P)\right]$$

$$v_2 \simeq k\epsilon_2, \ k \sim 0.2$$

For j = 1 nuclei the tensor polarization is

$$P_{zz} = n(1) + n(-1) - 2n(0)$$

 $v_2\{\Phi_P\} \simeq k \,\epsilon_2^{j_3 = \pm 1} \{\Phi_P\} P_{zz}, -1.5 \le P_{zz} \le 0.7$
 $-0.5\% \lesssim v_2\{\Phi_P\} \lesssim 1\%$

One-particle distribution – can be measured precisely! Random fluctuations cancel

Prospects at fixed target experiments

AFTER@LHC - injecting a polarized gas target into the Pb beam

2.76A TeV Pb beam on a fixed target $\rightarrow \sqrt{s_{NN}} = 72$ GeV, at LHCb $-2.3 < \eta_{\rm CM} < 0.7$

[C. Barschel, Ph.D. thesis, (2014)

R. Aaij et al. (LHCb), JINST 9, P12005 (2014), arXiv:1410.0149]

Estimates based on the quadrupole moment

$$v_2\{\Phi_P\} \simeq -k \frac{3Q_2}{4Z(\langle r^2 \rangle + \frac{3}{2}\langle b^2 \rangle)} \frac{3j_3^2 - j(j+1)}{j(2j-1)} P$$

The lowest possible j is 1 (no effect for ${}^3{\rm He}$ or tritium, where $j=\frac{1}{2}$)

Light clustered nuclei

with E. Ruiz Arriola, M. Rybczyński, M. Piotrowska

$^{12}\text{C-A}$ – role of α clusters

"Futurology" from [WB, Ruiz Arriola, PRL 112 (2014) 112501] Nuclear structure from ultra-relativistic collisions!

Probe to what degree $^{12}\mathrm{C}$ is made of three lpha's

Specific features of the 12 C collisions with a "wall" of Pb or Au:

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

$^{12}\mathsf{C}$ - $^{197}\mathsf{Au}$, $\sqrt{s_{NN}}=200$ GeV

[PB, WB, Ruiz Arriola, Rybczyński. PRC90 (2014) no.6, 064902] \rightarrow effects of geometric arrangement for most central $v_n\{4\}/v_n\{2\}$ a good response-invariant probe (recall $v_n \simeq \kappa \epsilon_n$, n=2,3)) [see also Giacalone, Noronha-Hostler, Ollitrault, PRC95 (2017) 054910]

cosidered seriously in future runs at RHIC and the LHC

Summary

Summary

- Matter flows in small systems
- Polarized deuteron controlled geometry
- Clustered small nuclei in light-heavy collisions insight into nuclear structure from harmonic flow

Congratulations, Peter!!!