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L Introduction

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions:

m Collective flow

m Jet quenching
Flow manifests itself in harmonic components in the momentum
spectra, certain features in correlation data (ridges), interferometry
(femtoscopy), ...

m Bozek 2010: p+A and p+p in hydro

m Werner, Karpenko, Pierog 2010: ridge in p+p

m Ridges discovered experimentally in small systems, p+A and
high-multiplicity p+p
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3-stage approach

Our three-phase approach: initial — hydro — statistical
hadronization

m Initial phase - Glauber model
m Hydrodynamics - 3+1 D viscous event-by-event
m Statistical hadronization

Main questions:

Are the central p-Pb collisions collective?

What is the nature of the initial state?
What are the limits/conditions on applicability of hydrodynamics?
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L3—stage approach

Snapshots of initial Glauber condition in central p+Pb

Typical transverse-plane configuration of centers of the participant nucleons in
a p+Pb collision generated with GLISSANDO
5% of collisions have more than 18 participants, rms ~ 1.5 fm — quite large!
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Snapshot of peripheral Pb+Pb

Most central values of N,, in p-Pb would fall into the 60-70% or
70-80% centrality class in Pb+Pb
Pb+Pb: ¢c=60-70% = 22 < N,, < 40, c=70-80% =11 < N, <21
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in Pb+Pb somewhat larger size than in p+Pb
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L3—s’cage approach

Smearing

Gaussian smearing with width 0.4 fm (physical effect)

standard compact

This is fed into e-by-e hydro as initial condition
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L3—s’cage approach

Size in p+Pb

p+Pb, N, = 18
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red - centers of participants, blue - center-of-mass of colliding pairs
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L3—s’cage approach

Size in p+Pb vs Pb+Pb

fixed N, = 18
7E T T
sF n
I“ p+Pb compact
i1
- 5F [N
g H
5 4r [
Q 1 H p+Pb standard
=3 i
B Pt
T, LS
HE
o
1 [
h 1
ok - .

0.0 0.5 10 15 20 25
<r?>Y2 [fm]

smaller size in p+Pb — larger entropy density — more rapid
expansion

All in all, initial conditions in most central p+Pb not very far from
peripheral Pb+Pb
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L3—s’cage approach

Multiplicity distribution
To reproduce the multiplicity distribution of the most central events in
p+Pb one needs to fluctuate the strength of the Glauber sources. We
overlay the Gamma distribution (Gamma + Poisson = negative
binomial). At statistical hadronization Poissonian fluctuations are
generated

p+Pb, N =18, overlaid I distribution
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L3—s’cage approach

Assumed factorization of the transverse and longitudinal
distributions
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alignment of F and B event planes (can be checked experimentally)

collimation of flow at distant longitudinal separations — ridges!
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Surfers - the near-side ridge
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L3—s’cage approach

Hydrodynamics [Bozek 2011]

341 D viscous event-by-event hydrodynamics

B Tt = 0.6 fm/c, /s = 0.08 (shear), (/s = 0.04 (bulk)
m freezeout at Ty = 150 MeV

m average initial temperature in the center of the fireball
T; = 242 MeV (< R? >/2= 1.5 fm), or
319 MeV (< R? >/2=10.9 fm) - adjusted to fit multiplicity
m realistic equation of state (lattice + hadron gas [Chojnacki &
Florkowski 2007]), viscosity necessary for small systems

m lattice spacing of 0.15 fm (thousands of CPU hours)
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L3—s’cage approach

< R?2>12=15fm < R? >12-0.9 fm
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isotherms at freeze-out Ty = 150 MeV for two sections in the
transverse plane

evolution lasts about 4 fm/c - shorter but more rapid than in A+A
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Statistical Hadronization

Statistical hadronization via Frye-Cooper formula + resonance
decays (THERMINATOR), transverse-momentum conservation
approximately imposed, local charge conservation included
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LHC: vy vs ATLAS
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L Flow

UQ{Q} and U3{2}(pT)
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L Flow

vo{2} and v3{2} vs pr
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(even too much flow)
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v9 and v3 from the scalar-product method

[STAR 2002, Luzum & Ollitrault 2012]
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L Flow

V2 and U3

cuts: |n| < 2.5, 0.3 < pr <5 GeV
< R? >12=1.5 fm

| c=0-3.4% ¢=3.4-7.8%
Glauber+Poisson
v2{2}% [1077] 3.70(1) 3.78(2)
v3{2}2 [1073] 1.04(1) 0.95(1)
vo{4}* [1079] -0.4(4) 1.83(5)
Glauber+NB
{232 [1073] | 8.18(12) 8.24(10)
v3{2}2 [1073] 1.52(8) 1.51(6)
vo{4}* [1076] 15(7) 16(6)

more fluctuations — more harmonic flow
vo{4} very sensitive (fluctuations)
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L Correlations

Definition of the 2D correlation function

NPRS(An,A9) — S(An,AP)
C(Any A¢) = ]]i;:%?)i(r:d(An) = B(An,A¢)

(more convenient than the “per-trigger” correlations)
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L Correlations

Ridge in p-Pb, ATLAS

ATLAS  p+Pb |s,=5.02 TeV
fL=1pp? 0.5<p2’<4 GeV

SE’<20 GeV SE">80 GeV
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L Correlations

Projection on 2 < |An| < 5, ATLAS

J B(A9)d(AY)

Y(A¢) = C(A®) — bzyam

The near-side ridge from our model:
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red - < R?2 >Y/2=1.5 fm, blue - < R? >1/2=0.9 fm
[CGC-based calculation: Dusling & Venugopalan]
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Correlations

Ridge in p-Pb
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L Correlations

Flow from correlations (two-particle cumulants)

LHC: v, {2, |An| > 2GeV} vs CMS
top - vg, bottom - v3

most central, 0.3<pT<SGeV
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yellow - CMS
blue - standard (< R? >1/2= 1.5 fm)
red - compact (< R? >1/2=0.9 fm)
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LInterferornetry

HBT radii

Interferometric radii due to Bose-Einstein correlations - measure of the size of

the system at freeze-out
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Conclusions
Is there collectivity in small systems?

— collective dynamics is compatible with high-multiplicity LHC
data for p-Pb

m v, coefficients measured in p-Pb reproduced
semiquantitatively — vg large

m Model 2D correlations exhibit the two ridges, in particular the
near-side ridge (hydro — “surfers”) [flow = near-side ridge!]

m Interferometric radii for p+Pb are close to the A+A line, far
from the p+p line - way to distinguish, should be verified
shortly by ALICE

m Other effects (jets, core-corona, ...) — not included

m p+p [Bozek, Werner et al.] — needs structure of the proton

m Yet other models of the initial collision [Bzdak et al. 2013 —
CGC+hydro]



