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Basic idea

YT Au + "7 Au, N, = 198

@ An event with the same number of wounded nucleons N,, may
have a different shape and size

@ Smaller initial size — larger hydrodynamic flow — larger pp
(and vice versa)

@ Thus size fluctuations cause event-by-event pr fluctuations
@ How strong? ... arXiv:0907.3216 [nucl-th]
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Size fluctuations

@ average transverse size in a given event:
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@ event-by-event average of transverse sizes at fixed N,,:
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GLISSANDO

Scaled o at fixed N,,:
o ((r))

Oscaled = <<T'>>

bottom: wounded, top: mixed

o(<r>)/<<r>>
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In the wounded nucleon model the o4.qcq is insensitive o v, hence
insensitive to the collision energy. In the mixed model some
dependence comes from «, ranging from 0.12 to 0.3.
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Hydrodynamics with statistical hadronization

Hydro carries over the initial size fluctuation to (observed) (pr)
fluctuations “hydrodynamic push”
@ Initial state — hydrodynamics — freezeout — hadrons
@ More compressed initial condition leads to a faster build-up of
flow, and then higher transverse velocity at freezeout, which in
turn leads to higher (pr)

o a((pr))/{{pr)) = Aa({r))/{(r))

@ We estimate the proportionality constant via simulations with
Lhyquid (Chojnacki, Florkowski) and THERMINATOR
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2+1 perfect hydro (solution of the HBT puzzle)
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Fluctuations of the FO surface

Fluctuations of the size of the initial condition — hydro —
fluctuations of the freezeout surface and velocity

T 7 - scaou) i
T = [Mev | Te = 145[Mev ] T = 145[Mev ]
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Event-by-event hydrodynamics our way

Instead of 1000000 events, just two are enough!
The distribution of the (r) (at fixed N,,) is to a very good approximation

Gaussian: () — (2
r) — \\T"
)~ oo (-1 2RI
Imagine we ran simulations with fixed (r) (no size fluctuations). Then
particles would have some average momentum pr. Since hydrodynamic
evolution is deterministic, pr is a (very complicated) function of (r). We
can now use the Taylor expansion around {((r)):

((r) = ({r)) + .
(r={r))

pr — ({pr)) = %

The distribution of (pr) becomes
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Dynamical fluctuations

The full statistical distribution f((pr)) is a folding of the statistical
distribution of (pr) at a fixed initial size, centered around a certain
pr, with the distribution of pr centered around ((pr)):

f(pr)) ~ /d2pT exp <—M> exp <_M>

2
2O-stat

e [ T Ly T
2 (Ugtat + U?iyn)

The scaled dynamical variance is

Gagn _ o((r) (r) dpr
(r) ~ {0 (r)) dir)

(r)=((r))
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Results
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@ wounded-nucleon model (red crosses)
mixed model (blue crosses)

@ mixed model overshoots the data by 20% which can perhaps
be reduced with weake hydro push (e.g. viscosity, 3+1)
@ proper centrality dependence is approx. reproduced:

oayn/{(pT)) ~ 1/v/Nw
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_ Po((s))
((pr))

Scaled standar deviation of (pr) is connected to thermodynamic
properties (Ollitrault '91)

Pa(()
R

£ ((r)
s — entropy density, € — energy density, P — pressure (last equality
follows from (s) ~ 1/(r)?)
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Connection to EoS

Scaled standar deviation of (pr) is connected to thermodynamic

properties (Ollitraglcgcy;?l)_ BU(<8>) - B ()

(pr)) e ((s) — “e ({m)
s — entropy density, € — energy density, P — pressure (last equality
follows from (s) ~ 1/(r)?)
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One can study average properties of the equation of state (its stiffness)
that way
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Conclusions

@ A few percent fluctuations of the initial size, present in
Glauber approaches, explain in a natural way the
experimentally observed (pr) fluctuations

@ Proper scaling with the number of wounded nucleons
Tdyn/{({pT)) ~ 1/+/Nw — proper dependence on centrality

@ A very weak dependence on the incident energy — as in
experiments

@ Our (pr) fluctuations should be considered as “background”
for studying further effects, such as minijets, clusters,
temperature fluctuations, etc.

@ Average information on P/e according to Ollitrault’s formula
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