$\begin{array}{c} {\rm Size \ fluctuations} \\ p_T {\rm -fluctuations} \\ {\rm Conclusions} \end{array}$

Wojciech Broniowski

Fluktuacje rozmiaru a fluktuacje pędu

Łukasz Obara, Mikołaj Chojnacki, WB

IFJ PAN & UJK

30 X 2009

Fluktuacje rozmiaru

 $\langle r \rangle = 2.95 \text{ fm}$

 $\begin{array}{c} \textbf{Size fluctuations} \\ p_T \text{-fluctuations} \\ \text{Conclusions} \end{array}$

Basic idea

 $\langle r \rangle = 2.95~{\rm fm}$

- $^{197}Au + ^{197}Au$, $N_w = 198$
- $\bullet\,$ An event with the same number of wounded nucleons N_w may have a different shape and size
- Smaller initial size \rightarrow larger hydrodynamic flow \rightarrow larger p_T (and vice versa)
- Thus size fluctuations cause event-by-event p_T fluctuations
- How strong? ...

arXiv:0907.3216 [nucl-th]

(日) (同) (目) (日)

 $\langle r \rangle = 2.83 \text{ fm}$

Size fluctuations

• average transverse size in a given event:

• event-by-event average of transverse sizes at fixed N_w :

$$\langle \langle r \rangle \rangle = \frac{1}{N_{events}} \sum_{k=1}^{N_{events}} \langle r \rangle_k$$

Woiciech Broniowski

GLISSANDO

Scaled σ at fixed N_w :

$$\sigma_{scaled} = \frac{\sigma\left(\langle r \rangle\right)}{\langle\langle r \rangle\rangle}$$

bottom: wounded, top: mixed $(N_{
m prod} \sim \alpha N_w/2 + (1-\alpha)N_{
m bin})$

< 🗇 🕨 < 🖻 🕨

In the wounded nucleon model the σ_{scaled} is insensitive σ_{NN} , hence insensitive to the collision energy. In the mixed model some dependence comes from α , ranging from 0.12 to 0.3.

Hydrodynamics with statistical hadronization

Hydro carries over the initial size fluctuation to (observed) $\langle p_T\rangle$ fluctuations "hydrodynamic push"

- $\bullet~$ Initial state $\rightarrow~$ hydrodynamics $\rightarrow~$ freezeout $\rightarrow~$ hadrons
- More compressed initial condition leads to a faster build-up of flow, and then higher transverse velocity at freezeout, which in turn leads to higher $\langle p_T\rangle$
- $\sigma(\langle p_T \rangle) / \langle \langle p_T \rangle \rangle \simeq A \sigma(\langle r \rangle) / \langle \langle r \rangle \rangle$
- We estimate the proportionality constant via simulations with Lhyquid (Chojnacki, Florkowski) and THERMINATOR

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\begin{array}{c} \text{Size fluctuations} \\ p_T \text{-} \textbf{fluctuations} \\ \text{Conclusions} \end{array}$

2+1 perfect hydro (solution of the HBT puzzle)

Fluctuations of the FO surface

Fluctuations of the size of the initial condition \to hydro \to fluctuations of the freezeout surface and velocity

э

Event-by-event hydrodynamics our way

Instead of 1 000 000 events, just two are enough!

The distribution of the $\langle r \rangle$ (at fixed N_w) is to a very good approximation Gaussian:

$$f(\langle r \rangle) \sim \exp\left(-\frac{(\langle r \rangle - \langle \langle r \rangle \rangle)^2}{2\sigma^2(\langle r \rangle)}\right)$$

Imagine we ran simulations with fixed $\langle r \rangle$ (no size fluctuations). Then particles would have some average momentum \bar{p}_T . Since hydrodynamic evolution is deterministic, \bar{p}_T is a (very complicated) function of $\langle r \rangle$. We can now use the Taylor expansion around $\langle \langle r \rangle \rangle$:

$$\bar{p}_T - \langle \langle p_T \rangle \rangle = \left. \frac{d\bar{p}_T}{d\langle r \rangle} \right|_{\langle r \rangle = \langle \langle r \rangle \rangle} (\langle r \rangle - \langle \langle r \rangle \rangle) + \dots$$

The distribution of $\langle \bar{p}_T \rangle$ becomes

$$f(\bar{p}_T) \sim \exp\left(-\frac{(\bar{p}_T - \langle \langle p_T \rangle \rangle)^2}{2\sigma^2(\langle r \rangle) \left(\frac{d\bar{p}_T}{d\langle r \rangle}\right)^2}\right)$$

Dynamical fluctuations

The full statistical distribution $f(\langle p_T \rangle)$ is a folding of the statistical distribution of $\langle p_T \rangle$ at a fixed initial size, centered around a certain \bar{p}_T , with the distribution of \bar{p}_T centered around $\langle \langle p_T \rangle \rangle$:

$$f(\langle p_T \rangle) \sim \int d^2 \bar{p}_T \exp\left(-\frac{(\langle p_T \rangle - \bar{p}_T)^2}{2\sigma_{stat}^2}\right) \exp\left(-\frac{(\bar{p}_T - \langle \langle p_T \rangle \rangle)^2}{2\sigma_{dyn}^2}\right)$$
$$\sim \exp\left(-\frac{(\langle p_T \rangle - \langle \langle p_T \rangle \rangle)^2}{2\left(\sigma_{stat}^2 + \sigma_{dyn}^2\right)}\right), \text{where } \sigma_{dyn} = \sigma(\langle r \rangle) \left.\frac{d\bar{p}_T}{d\langle r \rangle}\right|_{\langle r \rangle = \langle \langle r \rangle \rangle}$$

The scaled dynamical variance is

$$\frac{\sigma_{dyn}}{\langle\langle p_T\rangle\rangle} = \frac{\sigma(\langle r\rangle)}{\langle\langle r\rangle\rangle} \frac{\langle\langle r\rangle\rangle}{\langle\langle p_T\rangle\rangle} \left. \frac{d\bar{p}_T}{d\langle r\rangle} \right|_{\langle r\rangle = \langle\langle r\rangle\rangle}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

- wounded-nucleon model (red crosses) mixed model (blue crosses)
- mixed model overshoots the data by 20% which can perhaps be reduced with weake hydro push (*e.g.* viscosity, 3+1)
- proper centrality dependence is approx. reproduced: $\sigma_{dyn}/\langle\langle p_T\rangle\rangle\sim 1/\sqrt{N_W}$

Connection to EoS

Scaled standar deviation of $\langle p_T \rangle$ is connected to thermodynamic properties (Ollitrault '91) $\frac{\sigma_{dyn}}{\langle \langle p_T \rangle \rangle} = \frac{P}{\varepsilon} \frac{\sigma(\langle s \rangle)}{\langle \langle s \rangle \rangle} = 2 \frac{P}{\varepsilon} \frac{\sigma(\langle r \rangle)}{\langle \langle r \rangle \rangle}$

s – entropy density, ε – energy density, P – pressure (last equality follows from $\langle s\rangle\sim 1/\langle r\rangle^2)$

・ロト ・四ト ・ヨト ・ヨト

Connection to EoS

Scaled standar deviation of $\langle p_T \rangle$ is connected to thermodynamic properties (Ollitrault '91) $P \sigma(\langle s \rangle) = P \sigma(\langle r \rangle)$

$$\frac{\sigma_{dyn}}{\langle\langle p_T\rangle\rangle} = \frac{P}{\varepsilon} \frac{\sigma(\langle s\rangle)}{\langle\langle s\rangle\rangle} = 2\frac{P}{\varepsilon} \frac{\sigma(\langle r\rangle)}{\langle\langle r\rangle\rangle}$$

s – entropy density, ε – energy density, P – pressure (last equality follows from $\langle s\rangle\sim 1/\langle r\rangle^2)$

Wojciech Broniowski Fluktuacje rozmiaru

Conclusions

- A few percent fluctuations of the initial size, present in Glauber approaches, explain in a natural way the experimentally observed $\langle p_T \rangle$ fluctuations
- Proper scaling with the number of wounded nucleons $\sigma_{dyn}/\langle\langle p_T \rangle\rangle \sim 1/\sqrt{N_W}$ proper dependence on centrality
- A very weak dependence on the incident energy as in experiments
- Our $\langle p_T \rangle$ fluctuations should be considered as "background" for studying further effects, such as minijets, clusters, temperature fluctuations, etc.
- \bullet Average information on P/ε according to Ollitrault's formula