Forward-backward flow correlations in relativistic heavy-ion collisions¹

Wojciech Broniowski Jan Kochanowski University, Kielce Institute of Nuclear Physics PAN, Cracow

ISMD 2011

Miyajima, 25-30 September 2011

¹Based on P. Bozek, WB, J. Moreira, PRC 83, 034911 (2011) 🗈 🛛 🛓 👘 🚊 🔗 ແල

WB Torque

Outline

Introduction

Collision geometry

- Emission profiles from *d*-Au
- Emission profiles in AA

Fluctuations

• Initial-state fluctuations in Glauber

4 Torque

- Torque from fluctuations and asymmetric emission
- Measures of the torque
- Cumulants

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

'문⊁ ★ 문⊁

- \bullet determination of the initial state is crucial [review by S. Bass]
- event-by-event fluctuations

These elements jointly lead to interesting new effects, in particular to forward-backward flow correlations

(日) (同) (日) (日)

Emission profiles from d-AuEmission profiles in AA

Collision geometry

WB Torque

Emission profiles from d-AuEmission profiles in AA

Extension to AA collisions

[Gazdzicki, Gorenstein (2006); Bzdak (2009); Bzdak, Wozniak (2010); Bozek, Wyskiel, PRC 81 (2010) 054902]

mixed model: three sources $N_{bin},\;N_w^+,\;N_W^-$

$$N_{\rm prod} \sim \frac{1-\alpha}{2} N_w + \alpha N_{\rm bin}$$

 $lpha \sim 14\%$ at RHIC explains the F-B multiplicity fluctuations (Bzdak+Wozniak)

(日) (同) (三) (三)

Emission profiles from d-AuEmission profiles in AA

Extension to AA collisions

[Gazdzicki, Gorenstein (2006); Bzdak (2009); Bzdak, Wozniak (2010); Bozek, Wyskiel, PRC 81 (2010) 054902]

Initial-state fluctuations in Glauber

Fluctuations in the Glauber approach

• shape and size fluctuations originate from the statistical nature of the distribution of sources in the transverse plane

ullet increased eccentricity o hydro o increased v_2

< < >> < < < >> <</p>

- ullet e-by-e fluctuations of v_2
- triangular flow, higher Fourier components, the ridge

Initial-state fluctuations in Glauber

Fluctuations in the Glauber approach

clusters with $N_W^A \neq N_W^B$!

• shape and size fluctuations originate from the statistical nature of the distribution of sources in the transverse plane

- ullet increased eccentricity o hydro o increased v_2
- ullet e-by-e fluctuations of v_2
- triangular flow, higher Fourier components, the ridge

Initial-state fluctuations in Glauber

Digression: p_T fluctuations

radial size fluctuations \rightarrow hydro \rightarrow radial flow fluctuations \rightarrow explanation of p_T fluctuations at RHIC

GLISSANDO + 3+1 perfect hydro + THERMINATOR

mixed model, wounded-nucleon model, STAR and PHENIX data

[WB, Chojnacki, Obara, PRC 80 (2009) 051902(R)]

Torque from fluctuations and asymmetric emission Measures of the torque

イロン イロン イヨン イヨン

æ

Cumulants

The torque

Torque from fluctuations and asymmetric emission Measures of the torque Cumulants

イロン イロン イヨン イヨン

æ

The torque

Torque from fluctuations and asymmetric emission Measures of the torque Cumulants

・ロト ・日本・ ・ 日本・ ・

-

The torque

e-by-e fluctuation of the relative angle of the F and B principal axes

Torque from fluctuations and asymmetric emission Measures of the torque Cumulants

(日) (同) (日) (日)

Distribution of the torque angle

GLISSANDO simulations in the mixed model

 Δ_{FB} - torque angle between the forward and backward rapidity regions

narrow: $\eta_{\parallel} = 0.5$, broad: $\eta_{\parallel} = 2.5$ (c = 20 - 30%)

Torque from fluctuations and asymmetric emission Measures of the torque Cumulants

・ロト ・四ト ・ヨト ・ヨト

Distribution of the torque angle

GLISSANDO simulations in the mixed model

 Δ_{FB} - torque angle between the forward and backward rapidity regions

narrow: $\eta_{\parallel} = 0.5$, broad: $\eta_{\parallel} = 2.5$ (c = 20 - 30%)

Torque from fluctuations and asymmetric emission Measures of the torque Cumulants

Hydrodynamic evolution

• hydro (here perfect 3+1 with realistic EoS) evolution \rightarrow the torque survives • statistical hadronization leads to additional fluctuations - can we sort out the effect?

Torque from fluctuations and asymmetric emission Measures of the torque **Cumulants**

Measures of the torque based on cumulants

$$\left\langle e^{i2(\phi_F - \phi_B)} \right\rangle = \frac{1}{N_{\text{events}}} \sum_{\text{events}} \frac{1}{n_F n_B} \sum_{i=1}^{n_F} \sum_{j=1}^{n_B} e^{i2(\phi_i - \phi_j)}$$

When no correlations, then

$$f(\phi) = v_0 + 2\sum_{k=1}^{k} v_k \cos[k(\phi - \Psi^{(k)})]$$

and

$$\left\langle e^{i2(\phi_F - \phi_B)} \right\rangle = \left\langle v_{2,F} v_{2,B} \cos(2\Delta_{FB}) \right\rangle_{\text{events}}$$

Since we are interested in measuring the average $\cos[2(\Psi_F - \Psi_B)]$, we need to divide by $v_{2,F}v_{k,B}$. This can be achieved by considering the ratio

$$\cos(2\Delta_{FB}) \{2\} \equiv \frac{\left\langle e^{i2(\phi_F - \phi_B)} \right\rangle}{\sqrt{\left\langle e^{i2(\phi_{F,1} - \phi_{F,2})} \right\rangle \left\langle e^{i2(\phi_{B,1} - \phi_{B,2})} \right\rangle}} = \left\langle \cos(2\Delta_{FB}) \right\rangle_{\text{events}} + \text{ nonflow}$$

Torque from fluctuations and asymmetric emission Measures of the torque **Cumulants**

A D > A A P >

э

Simulations with THERMINATOR

triangles - no torque, squares - with torque (100 000 events)

only the primordial particles created at freeze-out included (test)

Torque from fluctuations and asymmetric emission Measures of the torque **Cumulants**

Simulations with THERMINATOR

(test)

triangles - no torque, squares - with torque (100 000 events)

effect is observable !

A D > A A P >

Summary

- Rapidity dependent reaction plane from simple assumptions: asymmetric emission profiles in rapidity + fluctuations → torque
- $\sim 20^{\circ}$ torque angle between F and B regions in most central and $\sim 10^{\circ}$ in mid-peripheral Au+Au collisions at the highest RHIC energy
- Similar for higher-order Fourier components
- Torqued fireball \rightarrow torqued collective flow \rightarrow torqued principal axes of the p_T distributions at different rapidities
- Signal detectable through the use of cumulants involving F and B particles
- With the fantastically high statistics available in experiments the effect can be examined in experiments, but large rapidity coverage needed
- The effect influences the elliptic and directed flow studies, which use the reaction planes determined in different pseudorapidity intervals
- Because of the increase in the statistical noise, one should look for the torque effects in mid-central/mid-peripheral collisions ($v_2\sqrt{n}$ should be maximal)

- The effects momentum, angular-momentum, and charge conservation should be examined
- The torque fluctuations in other multi-source models should be investigated
- The experimental detection of the torque would provide independent information on the initial state, in particular would confirm the assumptions on the initial emission profile from the sources

э

- The effects momentum, angular-momentum, and charge conservation should be examined
- The torque fluctuations in other multi-source models should be investigated
- The experimental detection of the torque would provide independent information on the initial state, in particular would confirm the assumptions on the initial emission profile from the sources

Please, analyze the data!