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Approach

Our approach (“Standard Model of heavy-ion collisions”):
initial — hydro — statistical hadronization
m Initial phase - Glauber model (or Color Glass, KLN)
m Hydrodynamics
m Statistical hadronization at freeze-out
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GLISSANDO

GLauber Initial State Simulations AND mOre...
[WB, Bozek, Rybczynski]

wounded nucleons + binary collisions
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Hydrodynamics (Bozek)
EM tensor of the perfect fluid
)" = (e + p)utu” — pgh”
+ stress corrections from shear 7 and bulk I viscosities (Israel-Stewart)
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Sound velocity and viscosity

IQCD Wuppertal-Budapest n/s
oS
03 M -
o ~ 04
o’ @
\ [ NS
N S
0.2 -/ e“
| @
| <02
01
| n/s=0.08
,,,,,, Us
0 L L L L 0 L > L L L
0 200 400 600 800 1000 0 100 200 300 400 500
T [MeV] T [MeV]

341 D viscous — thousand of hours of CPU!
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Statistical hadronization

Statistical hadronization at freeze-out via Frye-Cooper formula +
resonance decays (THERMINATOR), transverse-momentum
conservation approximately imposed, charge conservation imposed

3N
BN = [ asuow sl uta)
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How hydro works?
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341 D viscous hydro
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Initial fluctuations in the Glauber approach
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Two typical configuration of wounded nucleons in the transverse plane
generated with GLISSANDO, isentropes at s = 0.05, 0.2, and 0.4 GeV—3
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Odd harmonic flow from fluctuations
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Transverse-momentum fluctuations

smaller initial size in the event — stronger hydro push — larger
radial flow velocity — larger average transverse momentum in the
event, and vice versa
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2D two-particle correlations
Ra(An, Ag) = Mz (0n29)
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2D two-particle correlations
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Sources of correlations

m jets — central peak (same jet), away-side ridge (back-to-back

jets)
m collective harmonic flow — near- and away-side ridges
m charge balancing — central peak, shape of the near-side ridge
m resonance decays — away-side ridge
m Bose-Einstein — central peak
m Coulomb, final-state, ...
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The Ridge

PHOBOS | STAR i ALICE

* Hard Ridge: high p; trigger and lower p;
associates.

coanan

* Soft Ridge: correlations with no p;restriction

Soft Contribution to the Hard Ridge

G.M., 5.G. Nuclear Physics A 836 (2010) 43-58 arXiv:0910.3590
* Flow based explanations: correlations from
source fluctuations, and transverse expansion must
come from the same origin.

* Long Range correlations: correlations must
emerge at early times.

« Study the initial conditions!
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P-P

(a) CMS MinBias, p >0.1GeV/c (b) CMS MinBias, 1.0GeV/c<p, <3.0GeV/c
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Physics World, pp

physicsworld.com
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wayward particles are set by some sort of interaction between the
particles when they were created In the collision.
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Pb-Pb

py* :4-6 GeVic CMS Preliminary

Py :2-4GeVic 10-15% 1 15-20%
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p-Pb

CMS pPb \s,,, = 5.02 TeV, NoI™ < 35
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Flow

P (Ag, An) = —/d¢1d¢2d771d77291(¢17771)/31(¢27772)5A¢ da+6108n—ns—m + pc(Ag, An)

lee 1
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=1+2 Z vn (An) cos(nA¢)  (includes nonflow)
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spectra and flow coefficients as functions of 7 yield v2(An) only if p. =0
e-by-e — presence of odd harmonics also for symmetric collisions
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Star data, 2007

(0.8 < pr < 4 GeV - “unbiased”, HBT peak removed)
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STAR data, 2008

like sign (0.8 < pr < 4 GeV - “unbiased”)
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STAR data, 2008

unlike sign (0.8 < pr < 4 GeV - “unbiased”)
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STAR vs. model

(like sign, 0.8 < pr < 4 GeV, model unbalanced)

'4,7-%.5:]1.5 % - 2
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STAR vs. model

(unlike sign, 0.8 < pr < 4 GeV, model unbalanced)
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Charge balancing (from resonance decays and “direct”)

transverse-plane view of the expanding system at freeze-out

p1+

u
g g

P2
e

direct balancing: particle-antiparticle pair emitted from the neutral
hydrodynamic medium at freeze-out from the same space-time point,
eg,mrr, KYK~, pp, ..., APA0 .

resonances also contribute
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STAR vs. model

(like sign, 0.8 < pr < 4 GeV, balanced)
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STAR vs. model

(unlike sign, 0.8 < pr < 4 GeV, balanced)
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(correct “offsets” - compare to Takahashi et at. 2009, Sharma et al. 2011)
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Role of balancing
(0.2 <pr<2Ge, C= Rg)
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3 centralities

(0.8 < pr < 4 GeV)
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Balancing effect relatively strongest for central and peripheral collisions,

as in the experiment
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2D balance functions
B(ATL A¢) = { N+<;V_N++> + (N_4—N__)

1)
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2D balance functions

Blan 30) = D) 1 gt

30-40%, bal. 30-40%, bal.
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L Balance functions

2D balance functions
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2D balance functions

Crucial role of charge balancing
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2D balance functions

Crucial role of charge balancing

(a) (b) 30-40%

S 014 = 014
3% <%
= el S
58 :
@ 56 @ 5%
0 0
3 3
small (resonance decays only) big (direct balancing)

balancing + flow — collimation
important non-flow effect, a way to look at the data
(flow effects in correlations = obtainable by folding the single-particle

distributions containing flow)
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Balance functions in relative pseudrapidity An

Marginal distribution of the above 2D function: the charge balance
function in An

~ 0.7, ~ 0.7, ~ 0.7,
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comparison to the STAR data



hydro

L Balance functions

Balance functions in relative azimuth A¢

[STAR 2010]
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Balance functions in

[STAR
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v (An)
v2(An) = [ dAg/(2m) cos(nAe)Ry(An, Ag)

(8) 0-5%

comparison to extracted STAR data (HBT removed), v3, v3
fat: with balancing, thin: no balancing - completely flat

balancing — explanation of the fall-off of the same-side ridge in Ap
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v2(An) = [ dAg/(2m) cos(nAe)Ry(An, Ag)

(b) 30-40%
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comparison to extracted STAR data (HBT removed), v3, v3
fat: with balancing, thin: no balancing - completely flat

balancing — explanation of the fall-off of the same-side ridge in Ap
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v2(An) = [ dAg/(2m) cos(nAe)Ry(An, Ag)

=

B e B P

(c) 60-70%

comparison to extracted STAR data (HBT removed), v3, v3
fat: with balancing, thin: no balancing - completely flat

balancing — explanation of the fall-off of the same-side ridge in Ap
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STAR 2011

Paul Sorensen at QM2011
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Charge-dependence of v2(An)

(0.15 < pr < 2 GeV)
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Physics World again, p-Pb

-

Filter by topic | Please select.

Home Blog Multimedia Indepth Jobs Events Buyer’s guide

News archive Unexpected ‘ridge’ seen in CMS
2012 collision data again
November 2012

October 2012 0ct31,2012 96 comments

September 2012
August 2012

Subscribe today

July 2012 /
June 2012 n

May 2012

April 2012 Share this
Mesiobl2 " E-mall to a friend

Webinar series

February 2012 &1 StumbleUpon

January 2012 E: 4
i & Twitter ;
20 b colision event display, GMS e = TR
2000 “The first data from proton-iead collisions at the Compact Muon & Connotea
i Solenoid (CMS) experiment at the Large Hadron Colider (LHC) &t 5 creuike
e CERN Include a *idge" structure I corrlations between newly s S =
2006 (generated particles. According to theorists in the US, the ridge may Multiphysics simulation
e represent a new form of mater known as a “colour glass —now In Excel and the
ol condensate”. Related stories Cloud
2003 This is not the first time such correlations have been seen in A strange quark plasma Sparsoved by COMSOL
2002 collsion remnanis — in 2005, physicists working on the Relativistic  Quark-gluon plasma goes  Reglster now for this
2001 Heavy-fon Collider (RHIC) at Brookhaven National Laboratory in New  liquid free webinar
2000 York found that the pariicles generated In coliisions of gold nuclei O gluons, atoms and
== had a tendency to spread transversely rom the beam at very small  Slfngs e
1908 relative angles, close to zero. A similar correlation was seen in 2010 Quark-gluon mania retums
e at CMS in proten—proton collisions and then later that year in 10iCERN ENSdu s

lead-lead collisions. (See image below, parts a and b.) Curious correlations seen Slmcktins iy COMSOL
. oy o Leam more — view video

Observing ridges

When a graph s plotted o the fraction of particles versus the relative Rakitad Nnks Key suppliers

fransverse emission angle and the relative angle to the beam axis,  Wel Li

the correlation appears as a distinct ridge. Now, this ridge has been  Kevin Dusiing

seen In proton-lead collisions for the first time — within a week of Raju Venugopalan

data collection at CMS (see image below, part c) (arXiv:1210.5482).  Gunther Roland



hydro
L p-Pb

Ridge
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Projection 2 < |An < 4
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Flow in p-Pb

Ny 2 110, 0.1<p <2GeV
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possible to measure directly in the experiment
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HBT in p-Pb
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k1 dependence

Rout [fm]
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Conclusions

m Standard model of HIC works! (spectra, flow, interferometry radii)
m New development: description of e-by-e fluctuations

m E-by-e hydro in semi-quantitative agreement with the soft data for
2-particle 2D correlations from RHIC and LHC for A-A and p-A
collisions

m Charge balancing combined with flow explains the shape of the
same-side ridge for An <~ 1 and A¢ - major non-flow effect

m The fall-off of the flow coefficients v2 (An) reproduced

m Charge balancing increases v2{2} by a few % and splits the like-sign
and unlike-sign combinations

— late charge separation, at freeze-out
m Explanation of the same-side ridge in p-Pb
m Prediction: HBT radii for p-Pb as in peripheral A-A collisions

— collective behavior in high-multiplicity p-Pb systems
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