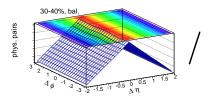
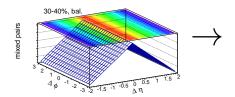
Korelacje w zderzeniach ciężkich jonów

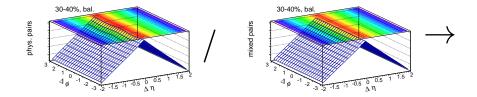
Wojciech Broniowski

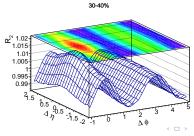
IFJ PAN & UJK


Seminarium, Instytut Fizyki UJ, 13 XI 2012


[P. Bożek & WB, PRL 109 (2012) 062301 oraz arXiv:1211.0845]

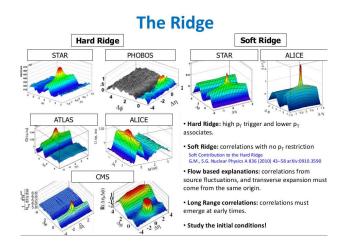
Definition

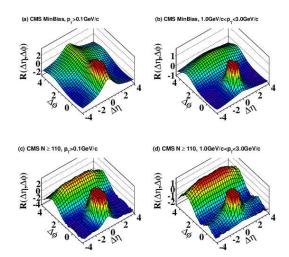

$$R_2(\Delta \eta, \Delta \phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta \eta, \Delta \phi)}{N_{\rm mixed}^{\rm pairs}(\Delta \eta)}$$



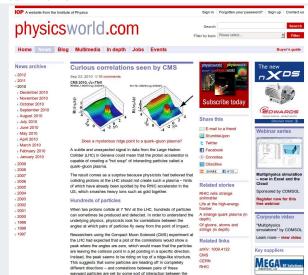
Definition

$$R_2(\Delta \eta, \Delta \phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta \eta, \Delta \phi)}{N_{\rm mixed}^{\rm pairs}(\Delta \eta)}$$



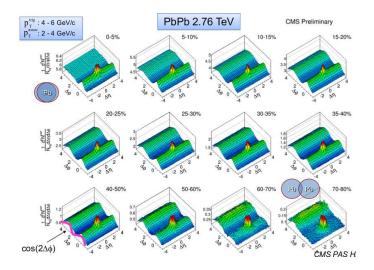

Sources of correlations

- ullet jets o central peak (same jet), away-side ridge (back-to-back jets)
- collective harmonic flow → near- and away-side ridges
- $lue{}$ charge balancing ightarrow central peak, shape of the near-side ridge
- resonance decays → away-side ridge
- Bose-Einstein → central peak
- Coulomb, final-state, ...

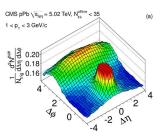

Ridges

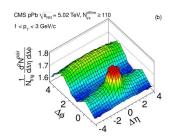
р-р

Physics World



particles when they were created in the collision.


One possible interpretation of the ridge is that the collision creates a dense fluid of many quarks and gluons = a quarks durin plasma =



Pb-Pb

p-Pb

(released last month)

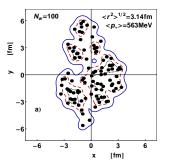
Flow

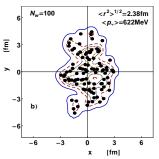
$$\rho_2^{\text{phys}}(\Delta\phi, \Delta\eta) = \frac{1}{2\pi} \int d\phi_1 d\phi_2 d\eta_1 d\eta_2 \rho_1(\phi_1, \eta_1) \rho_1(\phi_2, \eta_2) \delta_{\Delta\phi - \phi_2 + \phi_1} \delta_{\Delta\eta - \eta_2 - \eta_1} + \rho_c(\Delta\phi, \Delta\eta) \\
\rho_2^{\text{mixed}}(\Delta\eta) = \frac{1}{(2\pi)^2} \int d\Psi d\phi_1 d\phi_2 d\eta_1 d\eta_2 \rho_1(\phi_1, \eta_1) \rho_1(\phi_2 - \Psi, \eta_2) \delta_{\Delta\phi - \phi_2 + \phi_1} \delta_{\Delta\eta - \eta_2 - \eta_1} \\
\rho_1(\phi, \eta) = n(\eta) [1 + 2 \sum_n v_n(\eta) \cos(n\phi - \Psi_n) \\
R_2 = \frac{\langle \int d\eta_1 d\eta_2 n(\eta_1) n(\eta_2) \left[1 + 2 \sum_n v_n(\eta_1) v_n(\eta_2) \cos(n\Delta\phi) \right] \delta_{\Delta\eta - \eta_2 + \eta_1} + \rho_c \rangle_{\text{events}}}{\langle \int d\eta_1 d\eta_2 n(\eta_1) n(\eta_2) \delta_{\Delta\eta - \eta_2 + \eta_1} \rangle_{\text{events}}} = \\
= 1 + 2 \sum_n v_n^2(\Delta\eta) \cos(n\Delta\phi) \quad \text{(includes nonflow)}$$

spectra and flow coefficients as functions of η yield $v_n^2(\Delta\eta)$ only if $\rho_c=0$ e-by-e \to presence of odd harmonics also for symmetric collisions

Fluctuations

Our approach ("Standard Model of heavy-ion collisions"): initial \to hydro \to statistical hadronization

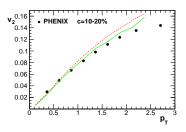

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

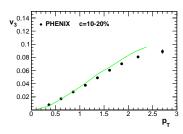

Fluctuations

Our approach ("Standard Model of heavy-ion collisions"): initial \to hydro \to statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons
- 1) Central p-Pb collisions are hydro-like near-side ridge appears naturally for the first time
- 2) for A-A collisions the local charge conservation (balancing) very important for 2-particle correlations \rightarrow explanation of bulk of the data for $\Delta\eta<\sim 1$, $\Delta\phi<\sim 1$ explanation of the "puzzling nature" of the near-side ridge \rightarrow late charge separation

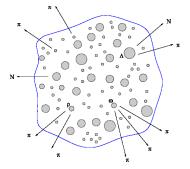
Initial fluctuations in the Glauber approach


Two typical configuration of wounded nucleons in the transverse plane generated with GLISSANDO, isentropes at $s=0.05,\,0.2,\,$ and 0.4 GeV $^{-3}$

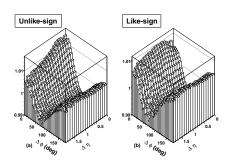

(taken as is, no need to talk about hotspots, tubes, etc.)

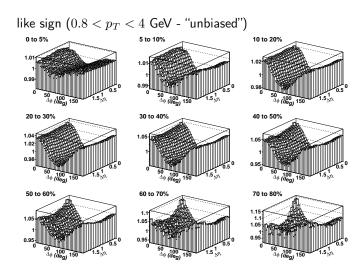
Hydrodynamics [Bożek]

3+1D viscous event-by-event hydrodynamics, tuned to reproduce the one-body **RHIC** data [Bożek 2012] standard set of parameters:

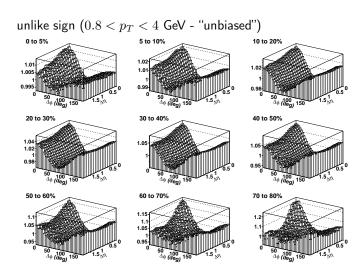

 $au_{\rm init}=0.6$ fm/c, $\eta/s=0.08$ (shear), $\zeta/s=0.04$ (bulk), $T_f=150$ MeV sample results \to it works for one-body observables

solid: e-by-e, dashed: averaged initial condition

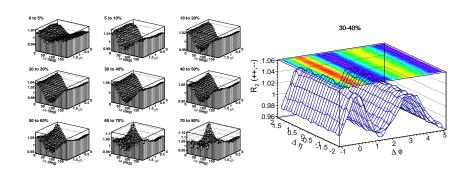

Final fluctuations


Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR), transverse-momentum conservation approximately imposed

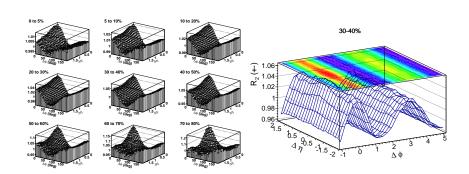
Star data, 2007


 $(0.8 < p_T < 4 \text{ GeV}$ - "unbiased", HBT peak removed)

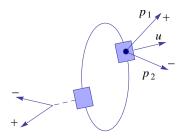
STAR data, 2008



STAR data, 2008


STAR vs. model

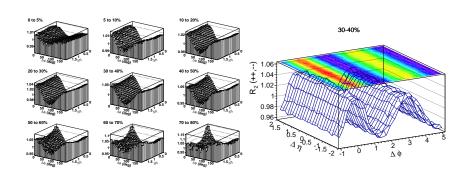
(like sign, $0.8 < p_T < 4$ GeV, model unbalanced)


STAR vs. model

(unlike sign, $0.8 < p_T < 4$ GeV, model unbalanced)

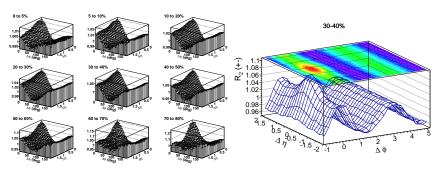
Charge balancing (from resonance decays and "direct")

transverse-plane view of the expanding system at freeze-out



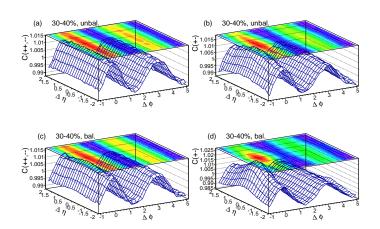
direct balancing: particle-antiparticle pair emitted from the neutral hydrodynamic medium at freeze-out from the same space-time point, e.g., $\pi^+\pi^-$, K^+K^- , $p\bar{p}$, ..., $\Delta^0\bar{\Delta}^0$... resonances also contribute special kind of clusters

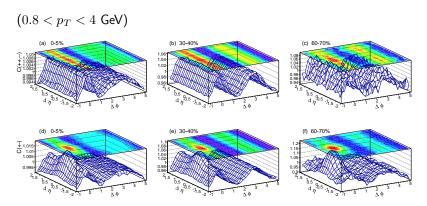
many ways to modify/improve


STAR vs. model

(like sign, $0.8 < p_T < 4$ GeV, balanced)

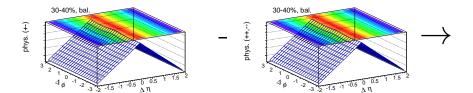
STAR vs. model

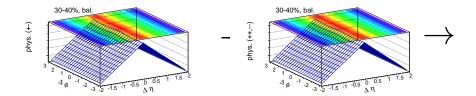

(unlike sign, $0.8 < p_T < 4$ GeV, balanced)

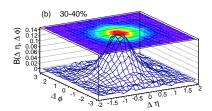

(correct "offsets" - compare to Takahashi et at. 2009, Sharma et al. 2011)

Role of balancing

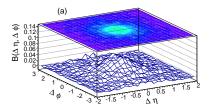
$$(0.2 < p_T < 2 \text{ GeV}, C = R_2)$$


3 centralities

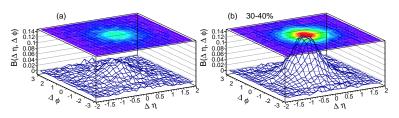

Balancing effect relatively strongest for central and peripheral collisions, as in the experiment


$$B(\Delta\eta,\Delta\phi) = \frac{\langle \ N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

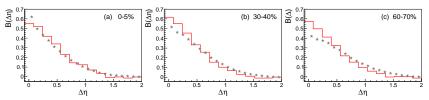


$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$



Crucial role of charge balancing

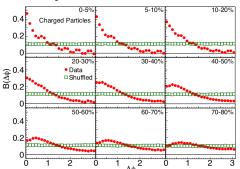
Crucial role of charge balancing


small (resonance decays only)

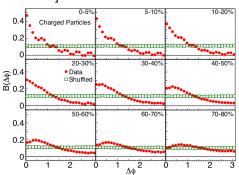
big (direct balancing)

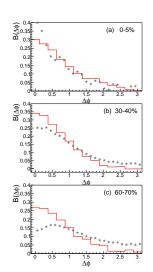
balancing + flow \to collimation important non-flow effect, a way to look at the data (flow effects in correlations \equiv obtainable by folding the single-particle distributions containing flow)

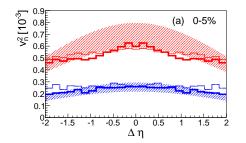
Balance functions in relative pseudrapidity $\Delta \eta$


Marginal distribution of the above 2D function: the charge balance function in $\Delta\eta$

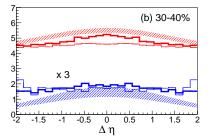
comparison to the STAR data


Balance functions in relative azimuth $\Delta\phi$


[STAR 2010]


Balance functions in relative azimuth $\Delta\phi$

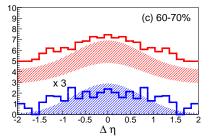
[STAR 2010]


$$v_n^2(\Delta \eta)$$

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$


$$v_n^2(\Delta \eta)$$

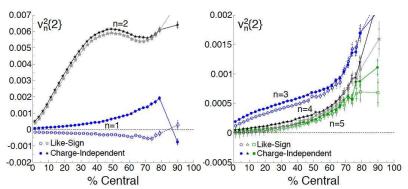
 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

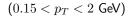
balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

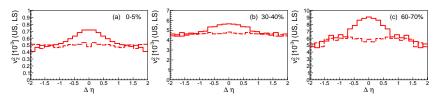
$$v_n^2(\Delta \eta)$$

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

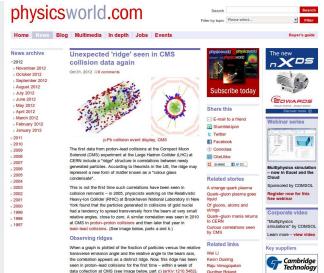


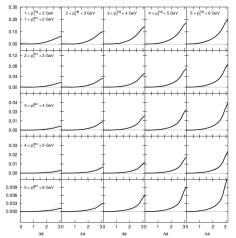
comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**


balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

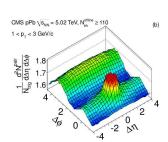

STAR 2011

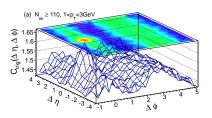
Paul Sorensen at QM2011

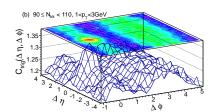

Charge-dependence of $v_n^2(\Delta \eta)$


solid: unlike, dashed: like

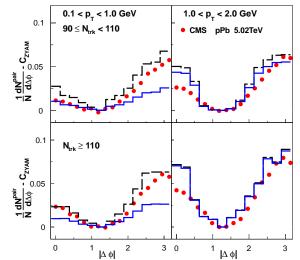
Physics World again

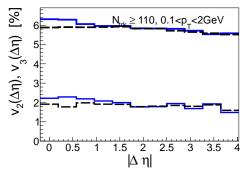

.....


Dusling & Venugopalan

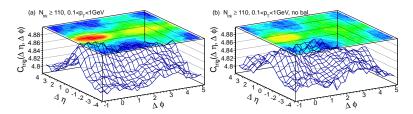


solid - pPb, dashed - pp No near-side ridge!

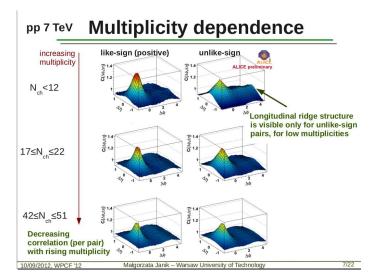

Ridge



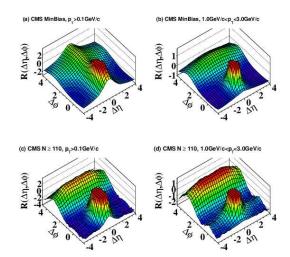
Projection $2 \leq |\Delta \eta \leq 4|$



Flow in p-Pb


possible to measure directly in the experiment

"Longitudinal" $(\Delta \eta \sim 0)$ ridge



back-to-back emission for soft particles

p-p in ALICE, Małgorzata Janik @ WPCF 2012

Longitudinal ridge in p-p from CMS

Conclusions

- E-by-e hydro in semi-quantitative agreement with the (soft) data for 2-particle 2D correlations from RHIC and LHC for A-A and p-A collisions
- Charge balancing combined with flow explains the shape of the same-side ridge for $\Delta\eta<\sim 1$ and $\Delta\phi$ major non-flow effect
- \blacksquare The fall-off of the flow coefficients $v_n^2(\Delta\eta)$ reproduced
- \blacksquare Charge balancing increases $v_n^2\{2\}$ by a few % and splits the like-sign and unlike-sign combinations
 - \rightarrow late charge separation
- Explanation of the same-side ridge in p-Pb
 - ightarrow collective behavior in high-multiplicity small systems
- Longitudinal ridge