

Multiparton picture of elliptic flow decorrelation in rapidity in pp collisions at the LHC

Piotr Bożek, Wojciech Broniowski

ISMD 2023, Gyöngyös, 21-26 August 2023

W. Broniowski

Multiparton decorrelation

ISMD 2023 1 / 20

QM 2022

 F_2 - (see following)

[ATLAS-CONF-2022-020]

flow decorrelation measure between forward and backward \vec{v}_2

- $F_2 = 0$ no decorrelation (perfect correlation)
- F_2 large large decorrelation (or small correlation)

Hitherto unexplained!

Outline

- Strings/flux tubes: FB picture
- Shape-flow transmutation
- FB flow correlation
- Model: multiple strings + fluctuations in hadronization
- F_2 in pp

Strings

Dual parton, Lund AMPT [Wu et al. 2018]

String end-points fluctuate in η_S , shorter strings \rightarrow larger FB decorrelation production of particles from the string, rescattering (!)

Shape-flow transmutation

Many particles, rescattering, generation of flow (not necessarily hydro!), $v_2 \sim \epsilon_2$

FB shape similarity \rightarrow flow similarity \rightarrow ridges

FB similarity is a result of early dynamics and is not obtained from hydro or transport

FB correlations

- One expects substantial FB correlations, e.g., for FB event plane angles (direction of flow), harmonic flow magnitude, or $\langle p_T \rangle$
- Focus on departures from perfect correlations, the torque effect: twisted event-plane angles [Bożek, WB, Moreira 2010]

Fluctuations in energy deposition from each string

[Brodsky, Gunion, Kuhn, PRL 39 (1977) 1120] [PB, WB 2015, 2017]

- Position (in spatial rapidity) of one of the string end-points is random
- Results in FB decorrelation

Phenomenological average emission profiles from d-Au

[Białas, Czyż, Acta Phys. Polon. B36, 905 (2005)]

We use uniformly distributed end-points, which yields on the average the triangular distribution, supported phenomenologically

Wounded parton model

A model of the proton is needed. Recall the near-side ridge in high-multiplicity pp, interperted as a sign of shape-flow transmutation

GLISSANDO 3 with wounded partons for the transverse shape pp cross section reproduced

We take exploratory cases of 3 and 5 partons per nucleon

Full picture

GLISSANDO 3 + strings with fluctuating end points

+ overlaid multiplicity fluctuation in each η bin ($\eta \simeq \eta_s$)

W. Broniowski

Multiplicity distribution in p-p

We overlay the distribution $\Gamma(x; \alpha, \beta) \sim x^{\alpha-1}e^{-\beta x}$, with parameters α, β (depending on the collision energy) adjusted to reproduce the height and slope of the tail of the data:

[data: $n_{\rm ch} \ge 1$, $p_T > 500$ MeV, $|\eta| < 2.5$]

Tail dominated by numerous strings

of strings

n_{ch}

Tail dominated by numerous strings

of strings

Tail dominated by numerous strings

of strings

n_{ch}

Tail dominated by numerous strings

of strings

Tail dominated by numerous strings

of strings

Tail dominated by numerous strings

of strings

n_{ch}

3-bin measure (CMS) of elliptic FB correlations

Need to use measures that cancel trivial decorrelations x_k , y_k - transverse coord. (relative to CM) of a piece of string k in an η bin w_k - weight from overlaid fluctuations

$$\begin{aligned} \epsilon_{2}(\eta) &= \frac{\sum_{k} w_{k} (x_{k} + iy_{k})^{2}}{\sum_{k} w_{k} (x_{k}^{2} + y_{k}^{2})} = \frac{\sum_{k} w_{k} r_{k}^{2} e^{2i\phi_{k}}}{\sum_{k} w_{k} r_{k}^{2}} \\ c_{2}(\eta, \eta_{\text{ref}}) &\equiv \text{Re } \operatorname{cov}_{ev} \left[\epsilon_{2}(\eta) \epsilon_{2}^{*}(\eta_{\text{ref}}) \right], \quad r_{2}(|\eta_{a}|) = \frac{c_{2}(-|\eta_{a}|, \eta_{\text{ref}})}{c_{2}(|\eta_{a}|, \eta_{\text{ref}})} \end{aligned}$$

see [CMS 2015]

ATLAS measurement

 r_2 from v_2 expected to be similar to r_2 from ϵ_2

W. Broniowski

Multiparton decorrelation

ISMD 2023 14 / 20

The slope F_2

 $r_2(|\eta_a|) \simeq e^{-2F_2|\eta_a|}$

 F_2 depends on multiplicity

Model vs ATLAS (preliminary)

(sophisticated corrections in the data analysis to get rid of non-flow)

• Right magnitude

- Proper monotonicity in $n_{\rm ch}$
- Essentially no dependence on the collision energy between 5 and 13 TeV
- More partons \rightarrow reduced F_2 , or weaker decorrelation, or more correlation

vs AMPT

W. Broniowski

ISMD 2023 17 / 20

Conclusions

Basic understanding:

- Shorter strings \rightarrow more decorrelation (F_2 up)
- 2 More strings \rightarrow less decorrelation (F_2 down)
- S Fluctuations in hadronization must reproduce multiplicity

Message to take home:

 F_2 in high-multiplicity pp collisions hints to multiparton dynamics

Possible improvements of our model:

- Collisions of n on m partons (Fock components of the proton wave function)
- ² More accurate profile of string fluctuations, reference to a_2 coefficient of multiplicity correlations [Rohrmoser, WB, 2019]
- Sobust conclusions should remain

BACKUP

W. Broniowski

Multiparton decorrelation

▶ < ≣ ▶ ≣ ∽ ९ ℃ ISMD 2023 19 / 20

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Multiplicity in pp vs models

[ATLAS 2016]