Hollowness in pp scattering at the LHC

Wojciech Broniowski

Jan Kochanowski U. Institute of Nuclear Physics PAN

Various Faces of QCD 2 NCBJ, Świerk, 8-9 October 2016

Research with Enrique Ruiz Arriola

Based on [arXiv:1609.05597]

From ISR to TOTEM

Parametrization of the scattering amplitude

Parametrization by [Fagundes 2013], based on [Barger-Phillips 1974], motivated by the Regge asymptotics:

$$\frac{f(s,t)}{p} = \sum_{n} c_n(s) F_n(t) s^{\alpha_n(t)} = \frac{i\sqrt{A}e^{\frac{Bt}{2}}}{\left(1 - \frac{t}{t_0}\right)^4} + i\sqrt{C}e^{\frac{Dt}{2} + i\phi}$$

s-dependent (real) parameters are fitted separately to all known differential pp cross sections for $\sqrt{s} = 23.4$, 30.5, 44.6, 52.8, 62.0, and 7000 GeV with $\chi^2/d.o.f \sim 1.2 - 1.7$

$$\frac{d\sigma_{\rm el}}{dt} = \frac{\pi}{p^2} |f(s,t)|^2, \ \ \sigma_T = \frac{4\pi}{p} {\rm Im} f(s,0)$$

Eikonal approximation

$$f(s,t) = \sum_{l=0}^{\infty} (2l+1) f_l(p) P_l(\cos \theta)$$

= $\frac{p^2}{\pi} \int d^2 b h(\vec{b},s) e^{i\vec{q}\cdot\vec{b}} = 2p^2 \int_0^\infty b db J_0(bq) h(b,s)$

 $t = -\bar{q}^2$, $q = 2p\sin(\theta/2)$, $bp = l + 1/2 + \mathcal{O}(s^{-1})$, $P_l(\cos\theta) \to J_0(qb)$, hence the amplitude in the impact-parameter representation becomes

$$h(b,s) = \frac{i}{2p} \left[1 - e^{i\chi(b)} \right] = f_l(p) + \mathcal{O}(s^{-1})$$

The eikonal approximation works well for b < 2 fm and $\sqrt{s} > 20 \text{ GeV}$

Procedure: $f(s,t) \rightarrow h(b,s) \rightarrow \chi(b)...$

Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross sections read

$$\sigma_{T} = \frac{4\pi}{p} \operatorname{Im} f(s,0) = 4p \int d^{2}b \operatorname{Im} h(\vec{b},s) = 2 \int d^{2}b \left[1 - \operatorname{Re} e^{i\chi(b)}\right]$$

$$\sigma_{\mathrm{el}} = \int d\Omega |f(s,t)|^{2} = 4p^{2} \int d^{2}b |h(\vec{b},s)|^{2} = \int d^{2}b |1 - e^{i\chi(b)}|^{2}$$

$$\sigma_{\mathrm{in}} \equiv \sigma_{T} - \sigma_{\mathrm{el}} = \int d^{2}b n_{\mathrm{in}}(b) = \int d^{2}b \left[1 - e^{-2\operatorname{Im}\chi(b)}\right]$$

The inelasticity profile

$$n_{\rm in}(b) = 4p {\rm Im}h(b,s) - 4p^2 |h(b,s)|^2$$

satisfies $n_{\rm in}(b) \leq 1$ (unitarity)

Dip in the inelasticity profile

From top to bottom: $\sqrt{s}=14000,7000,200,23.4~{\rm GeV}$

Slope of the inelasticity profile

Transition around $\sqrt{s} = 5$ TeV

Faces of QCD 7 / 19

Amplitude and eikonal phase

2D vs 3D opacity

Projection of 3D on 2D covers up the hollow: f(x, y, z) vs $\int_{-\infty}^{\infty} dz f(x, y, z)$

The hollow is covered up

W. Broniowski (UJK & IFJ PAN)

Optical potential

Phenomenological optical potential introduced by [Allen, Payne, Polyzou 2000] via the total squared mass operator for the pp system:

$$\mathcal{M}^2 = P^{\mu} P_{\mu} \stackrel{CM}{=} 4(p^2 + M_N^2) + \mathcal{V}$$

 P^{μ} – total four-momentum, p – CM momentum of each nucleon, M_N – nucleon mass, \mathcal{V} – invariant interaction, determined in the CM frame by matching in the non-relativistic limit to a non-relativistic potential, i.e., $\mathcal{V}=4U=4M_NV$

The prescription transforms the relativistic Schrödinger equation $\hat{\mathcal{M}}^2\Psi=s\Psi$, into an equivalent non-relativistic Schrödinger equation

$$(-\nabla^2 + U)\Psi = (s/4 - M_N^2)\Psi$$

with the reduced potential $U = M_N V$ (to be determined by inverse scattering)

Eikonal limit and optical potential

As in WKB
$$-\hbar^2 \Psi = 2m(E-V)\Psi$$
, where $\Psi = Ae^{iS/\hbar}$

$$(\nabla S)^2 - i\hbar \nabla^2 S = 2m(E - V)$$

$$\nabla S/\hbar = \sqrt{p^2 - 2mV/\hbar^2}$$

In one dimension and for $k \gg$ other scales

$$S/\hbar = pz - \frac{m}{\hbar^2 p} \int_{-\infty}^{z} dz' V(z')$$

э

Inverse scattering and optical potential

In the eikonal approximation one has

$$\Psi(\vec{x}) = \exp\left[ipz - \frac{i}{2p}\int_{-\infty}^{z} U(\vec{b}, z')dz'\right]$$

$$\chi(b) = -\frac{1}{2p} \int_{-\infty}^{\infty} U(\sqrt{b^2 + z^2}) dz = -\frac{1}{p} \int_{b}^{\infty} \frac{rU(r) dr}{\sqrt{r^2 - b^2}}$$

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can be inverted:

$$U(r) = M_N V(r) = \frac{2p}{\pi} \int_r^\infty db \frac{\chi'(b)}{\sqrt{b^2 - r^2}}$$

On-shell optical potential

From the definition of the inelastic cross section

$$\sigma_{\rm in} = -\frac{1}{p} \int d^3x \operatorname{Im} U(\vec{x}) |\Psi(\vec{x})|^2$$

 \rightarrow density of inelasticity is proportional to the absorptive part of the optical potential times the square of the modulus of the wave function. One can identify the *on-shell optical potential* as

 $\operatorname{Im} W(\vec{x}) = \operatorname{Im} U(\vec{x}) |\Psi(\vec{x})|^2$

Upon z integration,

$$-\frac{1}{p}\int dz \mathrm{Im}\, W(\vec{b},z) = n_{in}(b)$$

Inversion yields

$$\mathrm{Im}W(r) = \frac{2p}{\pi} \int_r^\infty db \frac{n'(b)}{\sqrt{b^2 - r^2}}$$

Results of inverse scattering

exp. amplitude \rightarrow eikonal phase $\rightarrow U(r) = M_N V(r)$ exp. amplitude \rightarrow inelasticity profile $\rightarrow W(r)$

From top to bottom: $\sqrt{s} = 14000, 7000, 200, 23.4$ GeV Large dip in the absorptive parts, in W(r) starts already at RHICL

No classical folding of absorptive parts

The hollowness effect cannot be reproduced by by folding of uncorrelated proton structures. We would then get, small \boldsymbol{r}

$$W(r) = \int d^3 y \rho(\vec{y} + \vec{r}/2) \rho(\vec{y} - \vec{r}/2)$$

= $\int d^3 y \rho(\vec{y})^2 - \frac{1}{4} \int d^3 y [\vec{r} \cdot \nabla \rho(\vec{y})]^2 + \dots$

 $\rightarrow W(r)$ would necessarily have a local maximum at r=0, in contrast to the phenomenological result

 \rightarrow not possible to obtain hollowness classically by folding the absorptive parts from uncorrelated constituents

Aspects of unitarity: model of [Dremin 2014]

$$2p \text{Im}h(b) \equiv k(b) = 4X e^{-b^2/(2B)}, \text{ Re}h(b) = 0, X = \sigma_{el}/\sigma_T$$

$$n_{in}(b) = 2k(b) - k(b)^2 = 8Xe^{-b^2/(2B^2)} - 16X^2e^{-b^2/B^2}$$

• X > 1/4: $n_{in}(b)$ has a maximum at $b_0 = \sqrt{2}B\log(4X) > 0$, with $k(b_0) = 1$

- X = 1/2: black disk limit
- W(r) develops a dip when $X > \sqrt{2}/8 = 0.177$

Cross sections

Ratio goes above 1/4 as energy increases!

Aspects of unitarity 2

If 2ph(b) = k(b) is not necessarily Gaussian but purely imaginary, then

$$n_{in}(b) = 2k(b) - k(b)^{2}$$
$$\frac{dn_{in}(b)}{db^{2}} = 2\frac{dk(b)}{db^{2}}[1 - k(b)]$$

hence the minimum of $\boldsymbol{n}(b)$ moves away from the origin when $\boldsymbol{k}(0)>1$

The real part of the amplitude, which is $\sim 10\%,$ brings in corrections at the level of 1%

Conclusions

- Hollowness in $n_{in}(b)$ inferred from the parametrization of the data
- Quantum effect, rise of 2p Imh(b) above 1
- Not possible to obtain classically by folding the absorptive parts from uncorrelated constituents
- 2D \rightarrow 3D magnifies the effect (flat in 2D means hollow in 3D)
- Interpretation via optical potential in the relativized problem
- Microscopic/dynamical explanations open [Alba Soto, Albacete 2016]
- Similar hollowness effect in low-energy n-A scattering