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From ISR to TOTEM
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Parametrization of the scattering amplitude

Parametrization by [Fagundes 2013], based on [Barger-Phillips 1974],
motivated by the Regge asymptotics:
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∑
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s-dependent (real) parameters are fitted separately to all known differential
pp cross sections for

√
s = 23.4, 30.5, 44.6, 52.8, 62.0, and 7000 GeV

with χ2/d.o.f ∼ 1.2− 1.7
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Eikonal approximation

f(s, t) =

∞∑
l=0

(2l + 1)fl(p)Pl(cos θ)

=
p2

π

∫
d2b h(~b, s) ei~q·

~b = 2p2
∫ ∞
0

bdbJ0(bq)h(b, s)

t = −~q2, q = 2p sin(θ/2), bp = l + 1/2 +O(s−1), Pl(cos θ)→ J0(qb),
hence the amplitude in the impact-parameter representation becomes

h(b, s) =
i

2p

[
1− eiχ(b)

]
= fl(p) +O(s−1)

The eikonal approximation works well for b < 2 fm and
√
s > 20 GeV

Procedure: f(s, t)→ h(b, s)→ χ(b)...
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Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross
sections read

σT =
4π

p
Imf(s, 0) = 4p

∫
d2bImh(~b, s) = 2

∫
d2b
[
1− Re eiχ(b)

]
σel =

∫
dΩ|f(s, t)|2 = 4p2

∫
d2b|h(~b, s)|2 =

∫
d2b|1− eiχ(b)|2

σin ≡ σT − σel =

∫
d2bnin(b) =

∫
d2b
[
1− e−2Imχ(b)

]
The inelasticity profile

nin(b) = 4pImh(b, s)− 4p2|h(b, s)|2

satisfies nin(b) ≤ 1 (unitarity)
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Dip in the inelasticity profile
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Slope of the inelasticity profile
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Amplitude and eikonal phase
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2D vs 3D opacity
Projection of 3D on 2D covers up the hollow: f(x, y, z) vs

∫∞
−∞ dzf(x, y, z)
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The hollow is covered up
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Optical potential

Phenomenological optical potential introduced by [Allen, Payne, Polyzou
2000] via the total squared mass operator for the pp system:

M2 = PµPµ
CM
= 4(p2 +M2

N ) + V

Pµ – total four-momentum, p – CM momentum of each nucleon, MN –
nucleon mass, V – invariant interaction, determined in the CM frame by
matching in the non-relativistic limit to a non-relativistic potential, i.e.,
V = 4U = 4MNV
The prescription transforms the relativistic Schrödinger equation
M̂2Ψ = sΨ, into an equivalent non-relativistic Schrödinger equation

(−∇2 + U)Ψ = (s/4−M2
N )Ψ

with the reduced potential U = MNV (to be determined by inverse
scattering)
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Eikonal limit and optical potential

As in WKB −~2Ψ = 2m(E − V )Ψ, where Ψ = AeiS/~

(∇S)2 −����XXXXi~∇2S = 2m(E − V )

∇S/~ =
√
p2 − 2mV/~2

In one dimension and for k � other scales

S/~ = pz − m

~2p

∫ z

−∞
dz′V (z′)
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Inverse scattering and optical potential

In the eikonal approximation one has

Ψ(~x) = exp

[
ipz − i

2p

∫ z

−∞
U(~b, z′)dz′

]

χ(b) = − 1

2p

∫ ∞
−∞

U(
√
b2 + z2)dz = −1

p

∫ ∞
b

rU(r) dr√
r2 − b2

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can
be inverted:

U(r) = MNV (r) =
2p

π

∫ ∞
r

db
χ′(b)√
b2 − r2
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On-shell optical potential
From the definition of the inelastic cross section

σin = −1

p

∫
d3x ImU(~x)|Ψ(~x)|2

→ density of inelasticity is proportional to the absorptive part of the optical
potential times the square of the modulus of the wave function. One can
identify the on-shell optical potential as

ImW (~x) = ImU(~x)|Ψ(~x)|2

Upon z integration,

−1

p

∫
dzImW (~b, z) = nin(b)

Inversion yields

ImW (r) =
2p

π

∫ ∞
r

db
n′(b)√
b2 − r2
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Results of inverse scattering
exp. amplitude → eikonal phase → U(r) = MNV (r)
exp. amplitude → inelasticity profile → W (r)
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Large dip in the absorptive parts, in W (r) starts already at RHIC!
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No classical folding of absorptive parts

The hollowness effect cannot be reproduced by by folding of uncorrelated
proton structures. We would then get, small r

W (r) =

∫
d3yρ(~y + ~r/2)ρ(~y − ~r/2)

=

∫
d3yρ(~y)2 − 1

4

∫
d3y[~r · ∇ρ(~y)]2 + . . .

→ W (r) would necessarily have a local maximum at r = 0, in contrast to
the phenomenological result
→ not possible to obtain hollowness classically by folding the absorptive
parts from uncorrelated constituents
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Aspects of unitarity: model of [Dremin 2014]

2pImh(b) ≡ k(b) = 4Xe−b
2/(2B), Reh(b) = 0, X = σel/σT

nin(b) = 2k(b)− k(b)2 = 8Xe−b
2/(2B2) − 16X2e−b

2/B2
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Cross sections

Ratio goes above 1/4 as energy increases!
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Aspects of unitarity 2

If 2ph(b) = k(b) is not necessarily Gaussian but purely imaginary, then

nin(b) = 2k(b)− k(b)2

dnin(b)

db2
= 2

dk(b)

db2
[1− k(b)]

hence the minimum of n(b) moves away from the origin when k(0) > 1

The real part of the amplitude, which is ∼ 10%, brings in corrections at the
level of 1%
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Conclusions

Hollowness in nin(b) inferred from the parametrization of the data
Quantum effect, rise of 2pImh(b) above 1
Not possible to obtain classically by folding the absorptive parts from
uncorrelated constituents
2D → 3D magnifies the effect (flat in 2D means hollow in 3D)
Interpretation via optical potential in the relativized problem
Microscopic/dynamical explanations open [Alba Soto, Albacete 2016]
Similar hollowness effect in low-energy n-A scattering
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