# Production of resonance in a thermal model

Wojciech Broniowski

The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences

Coimbra, 29 October 2003

(WB+W. Florkowski+Brigitte Hiller, Phys. Rev. C **68** (2003) 034911, Piotr Bożek+WB+WF, Balance functions in a thermal model with resonances, nucl-th/0310062)

#### The iris of RHIC



#### Motivation and scope

- RHIC is a "major data provider": soft physics, hard physics, "tomography", ...
- New spectroscopy: NA49 at CERN SPS found a very narrow Ξ<sup>--</sup><sub>3/2</sub>(1862) in Ξπ correlations, which is a ddssū state. Possible search of θ<sup>+</sup>(1540), *i.e. uudds*, ...)
- Hadronic resonances are important in particle production
- Appear in measurements of correlations of identified particles (  $K^*(892),$   $\rho,$   $\Delta^{++}(1232),$  ...)
- Reveals clues on the evolution of the system formed: hadronization, duration of the hadronic phase, equation of state of hot matter, size/shape at freeze-out, degree of rescattering afterwards, medium modification of particle properties, ...

 $ddss\bar{u}$ 



(NA49, hep-ex/0310014)

#### Thermal (statistical) models

Koppe (1948), Fermi (1950), Landau, Hagedorn, Rafelski, Bjorken, ...



WB + WF, PRL **87** (2001) 272302; PRC **65** (2002) 064905 (our variant of the model) WB + Anna Baran + WF, Acta Phys. Pol. B **33** (2002) 4235 (review)

#### Our approach in a capsule

- 1.  $T_{\rm chem} = T_{\rm kin} \equiv T$ , single freeze-out (a radical simplification, supported by recent results:  $R_{\rm out}/R_{\rm side} \sim 1$ ,  $R_{\rm side}(\phi)$  has out-of-plane deformation, resonances seen abundantly)
- 2. Complete treatment of resonances (important due to the Hagedorn-like exponential growth of the number of states)
- 3. Assumed simple freezeout hypersurface (longitudinal and transverse flow)
- 4. 4 parameters:  $T, \mu_B$  (fixed by the ratios of the particle abundances), invariant time at freeze-out  $\tau$  (controls the overall normalization), transverse size  $\rho_{\max}$  ( $\rho_{\max}/\tau$  controls the slopes of the  $p_{\perp}$  spectra)
- 5. Hubble-like flow,  $u^{\mu} = x^{\mu}/\tau$  (supported by the so-called *scaling* solution to hydrodynamics)

... and it works very well!  $\;\rightarrow\;$ 

#### **Particle ratios**

| $\sqrt{s_{NN}}$ [GeV]  | 130       | 200          |
|------------------------|-----------|--------------|
| T [MeV]                | $165\pm7$ | $160\pm5$    |
| $\mu_B$ [MeV]          | $41\pm5$  | <b>26</b> ±4 |
| $\mu_S \; [{\sf MeV}]$ | 9         | 5            |
| $\mu_I$ [MeV]          | -1        | -1           |
| $\chi^2/DOF$           | 1.0       | 1.5          |

|                                                 | Model             | Experiment                                                                                       |  |  |  |  |
|-------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| Ratios used in the thermal analysis for 200 GeV |                   |                                                                                                  |  |  |  |  |
| $\pi^-/\pi^+$                                   | $1.009 \pm 0.003$ | $\begin{array}{c} 1.025 \pm 0.006 \pm 0.018 \\ 1.02 \pm 0.02 \pm 0.10 \end{array}$               |  |  |  |  |
| $K^-/K^+$                                       | $0.939 \pm 0.008$ | $\begin{array}{c} 0.95 \pm 0.03 \pm 0.03 \\ 0.92 \pm 0.03 \pm 0.10 \end{array}$                  |  |  |  |  |
| $\overline{p}/p$                                | $0.74 \pm 0.04$   | $\begin{array}{c} 0.73 \pm 0.02 \pm 0.03 \\ 0.70 \pm 0.04 \pm 0.10 \\ 0.78 \pm 0.05 \end{array}$ |  |  |  |  |
| $p/\pi^-$                                       | $0.104 \pm 0.010$ | $0.083 \pm 0.015$                                                                                |  |  |  |  |
| $K^-/\pi^-$                                     | $0.174 \pm 0.001$ | $0.156 \pm 0.020$                                                                                |  |  |  |  |
| $\Omega/h^- \times 10^3$                        | $0.990 \pm 0.120$ | $0.887 \pm 0.111 \pm 0.133$                                                                      |  |  |  |  |
| $\overline{\Omega}/h^- \times 10^3$             | $0.900 \pm 0.124$ | $0.935 \pm 0.105 \pm 0.140$                                                                      |  |  |  |  |

#### **Transverse-momentum spectra**



(experimental  $\Xi$ 's went down by  $\sim$  a factor of 2)



#### (data at different centrality, or impact parameter)

Centrality c is defined as a percentage of the most central events. To a very good accuracy

$$c \simeq \frac{\pi b^2}{\sigma_{\text{inel}}^{\text{tot}}} \simeq \frac{b^2}{4R^2}$$

(WB+WF, PRC 65 (2002) 024905)



#### Compilation of geometric parameters (by A. Baran)

|        | c [%]    | au [fm] (norm)  | $ ho_{ m max}$ [fm] | $\langle eta_{\perp}  angle$ (slope) |
|--------|----------|-----------------|---------------------|--------------------------------------|
| ALL    | 0 - 5/10 | $7.58 \pm 0.32$ | $7.27 \pm 0.12$     | $0.52 \pm 0.02$                      |
| BRAHMS | 10       | $7.68 \pm 0.19$ | $7.46 \pm 0.05$     | $0.52 \pm 0.01$                      |
| STAR   | 0 - 5    | $9.74 \pm 1.57$ | $7.74 \pm 0.68$     | $0.45 \pm 0.08$                      |
|        | 5 - 10   | $8.69 \pm 1.39$ | $7.18 \pm 0.64$     | $0.47 \pm 0.08$                      |
|        | 10 - 20  | $8.12 \pm 1.31$ | $6.44 \pm 0.57$     | $0.45 \pm 0.08$                      |
|        | 20 - 30  | $7.24 \pm 1.18$ | $5.57 \pm 0.50$     | $0.44 \pm 0.08$                      |
|        | 30 - 40  | $7.07 \pm 1.17$ | $4.63 \pm 0.39$     | $0.39 \pm 0.08$                      |
|        | 40 - 50  | $6.38 \pm 1.02$ | $3.91 \pm 0.33$     | $0.37 \pm 0.07$                      |
|        | 50 - 60  | $6.19 \pm 1.09$ | $3.25 \pm 0.28$     | $0.32 \pm 0.07$                      |
|        | 70 - 80  | $5.48 \pm 0.81$ | $4.03 \pm 0.10$     | $0.43 \pm 0.06$                      |
| PHENIX | 0 - 5    | $7.86 \pm 0.38$ | $7.15 \pm 0.13$     | $0.50 \pm 0.02$                      |
|        | 20 - 30  | $6.14 \pm 0.32$ | $5.62 \pm 0.11$     | $0.50 \pm 0.02$                      |
|        | 30 - 40  | $5.73 \pm 0.16$ | $4.95\pm0.05$       | $0.48 \pm 0.01$                      |
|        | 40 - 50  | $4.75 \pm 0.28$ | $3.96 \pm 0.09$     | $0.47 \pm 0.03$                      |
|        | 50 - 60  | $3.91 \pm 0.23$ | $3.12 \pm 0.07$     | $0.45 \pm 0.03$                      |
|        | 60 - 70  | $3.67 \pm 0.12$ | $2.67 \pm 0.03$     | $0.42 \pm 0.01$                      |
|        | 70 - 80  | $3.09 \pm 0.11$ | $2.02 \pm 0.02$     | $0.39 \pm 0.01$                      |
|        | 80 - 91  | $2.76 \pm 0.20$ | $1.43 \pm 0.03$     | $0.32 \pm 0.03$                      |



#### **Correlations of identified particles**

Two very clever techniques are used in order to subtract the background: mixed event  $(K^*(892), \Xi(1862))$  and like-sign subtraction  $(\rho)$ 

- Invariant-mass spectra  $(K \pi, \pi \pi, \text{ to come out shortly: } p \pi)$
- correlations in rapidity (balance functions)

#### $\pi^+\pi^-$ pairs from STAR



(from J. Adams et al., nucl-ex/0307023; P. Fachini, nucl-ex/0305034)



(from J. Adams et al., STAR Collaboration, Phys. Rev. Lett. **90** (2003) 172301)

Can we explain all this in the thermal model?

#### The phase-shift formula for the density of resonances

Beth,Uhlenbeck (1937); Dashen, Ma, Bernstein, Rajaraman (1974); **Weinhold (1998)**, Friman, Nörenberg; **WB, WF, B. Hiller**, PRC **68** (2003) 034911; Pratt, Bauer, nucl-th/0308087

$$\frac{dn}{dM} = f \int \frac{d^3p}{(2\pi)^3} \frac{d\delta_{\pi\pi}(M)}{\pi dM} \frac{1}{\exp\left(\frac{\sqrt{M^2 + p^2}}{T}\right) \pm 1}$$

In some works the spectral function of the resonance is used *ad hoc* as the weight, instead of the derivative of the phase shift. For narrow resonances this does not make a difference, since then  $d\delta(M)/dM \simeq \pi \delta(M - m_R)$ , and similarly for the spectral function.

$$n^{\text{narrow}} = f \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\exp\left(\frac{\sqrt{m_R^2 + p^2}}{T}\right) \pm 1}$$

For wide resonances, or for effects of tails, the difference between the correct formula and the one with the spectral function is signifcant

#### $d\delta_{\pi\pi}(M)/dM$ from experiment



Small contribution from  $\sigma$ , negative and tiny contribution from I=2,  $\rho$ -peak slightly shifted to lower M,  $1/\sqrt{M-4m_\pi^2}$  behavior for the  $\sigma$ 

#### Warm-up calculation - static source

We compute the spectra at mid-rapidity, hence



#### **Cuts/flow + feeding from resonances**

Flow has no effect on the invariant mass of a pair of particles produced in a resonance decay, since the quantity is Lorentz-invariant. Neverthelss, it affects the results since the kinematic cuts in an obvious manner break this invariance



The invariant  $\pi^+\pi^-$  mass spectra in the single-freeze-out model for four sample bins in the trasverse momentum of the pair,  $p_T$ , plotted as a function of M.  $\eta$  indicates  $\eta + \eta'$ . All kinematic cuts of the STAR experiment are incorporated

W. Broniowski, Coimbra, October 2003

#### **Resonanse decays**

The higher-states decays lead to enhancement factors for low resonances:  $K_S = 1.98$ ,  $\eta = 1.74$ ,  $\sigma = 1.13$ ,  $\rho = 1.42$ ,  $\omega = 1.43$ ,  $\eta' = 1.08$ ,  $f_0 = 1.01$ , and  $f_2 = 1.28$ . Thus, the effects is strongest for light particles,  $K_S$ ,  $\eta$ ,  $\rho$ , and  $\omega$ , while it is weaker for the heavier  $\eta'$  and scalar mesons.

Full model, with feeding from higher resonances and flow/cuts at  $T=165~{\rm MeV}$  is similar to the naive model at  $T=110~{\rm MeV}$  !

#### STAR vs. thermal model, lowered $\rho$





vacuum  $\rho$ 

#### $p_{\perp}$ spectra of resonances



(model parameters,  $\tau = 5$  fm and  $\rho_{max} = 4.2$  fm, correspond to centralities 40-80%) For  $f_0$  experiment > thermal model!

#### W. Broniowski, Coimbra, October 2003

#### **Predictions**



#### **Balance functions**

(based on: Piotr Bożek+WB+WF, Balance functions in a thermal model with resonances, nucl-th/0310062)

The balance functions analyzed by the STAR Collaboration at RHIC are defined as

$$B(\delta, Y) = \frac{1}{2} \left\{ \frac{\langle N_{+-}(\delta) \rangle - \langle N_{++}(\delta) \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+}(\delta) \rangle - \langle N_{--}(\delta) \rangle}{\langle N_{-} \rangle} \right\},$$

where  $N_{+-}(\delta)$  counts the opposite-charge pairs when both members of the pair fall into the rapidity window Y. Their relative rapidity is  $|y_2 - y_1| \equiv \delta$ .  $N_+$  is the number of positive particles in the interval Y.

For sufficiently large rapidity interval  $Y \sim Y^{\max}$ , the balance function of *all* charged hadrons is normalized to unity,

$$\int_{0}^{Y^{\max}} d\delta B(\delta, Y^{\max}) = 1,$$

which is a condition reflecting the overall charge conservation.

#### Balance functions in the thermal model

Resonance and non-resonance contributions,

 $B(\delta, Y) = B_{\rm R}(\delta, Y) + B_{\rm NR}(\delta, Y)$ 





The widths of the balance functions,  $\langle\delta\rangle$ , are obtained (as in experiment) for the range  $0.2<\delta<2.6$ 

| Model              |                              |                                  |                                    |                                  |  |  |
|--------------------|------------------------------|----------------------------------|------------------------------------|----------------------------------|--|--|
| $ ho_{ m max}/	au$ | $\langle eta_{\perp}  angle$ | $\langle \delta  angle_{ m res}$ | $\langle \delta  angle_{ m therm}$ | $\langle \delta  angle_{ m tot}$ |  |  |
| 0.9                | 0.50                         | 0.59                             | 0.67                               | 0.63                             |  |  |
| Experiment         |                              |                                  |                                    |                                  |  |  |
| c = 0 - 10%        |                              |                                  | $0.594 \pm 0.019$                  |                                  |  |  |
| c = 10 - 40%       |                              |                                  | $0.622\pm0.020$                    |                                  |  |  |
| c = 40 - 70%       |                              |                                  | $0.633 \pm 0.024$                  |                                  |  |  |
| c = 70 - 96%       |                              |                                  | $0.664 \pm 0.029$                  |                                  |  |  |

The dependence of the width on centrality cannot be reproduced by varying the transverse flow within limits consistent the the single-particle spectra.

### Summary

- 1. Old story: success for abundances,  $p_{\perp}\text{-spectra}$
- 2. Not covered: the model also works very reasonably for the HBT radii, in particular  $R_{\rm out}/R_{\rm side}\sim 1$
- 3. ... and for the elliptic flow (A. Baran, in preparation)
- 4. New story: resonances are an important source of correlations between opposite-charge pions
- 5. Shape of the  $\pi\pi$  "spectral line" new thermometer
- 6. Derivative of phase shifts, not the spectral density as weight !
- 7. Full model gives similar results at 165MeV to the naive calculation at 110MeV (cooling via decays)
- 8. Kinematic cuts and flow important, higher resonance decays important
- 9. Not possible to place the  $\rho$  peak at the experimental value (medium effects -Brown-Rho scaling?, other effects?)
- 10. By summing up the resonance and non-resonance contributions we obtain the pion balance function with the shape similar to the data
- 11. The normalization of the model balance function is significantly larger than in the experiment (a factor of 2.5 3) because of the effect of a limited detector efficiency that we are not able to take into account



## Things are so complicated that

they become simple again!

#### **Back-up slides**

#### The STAR cuts

The cuts in the STAR analysis of the  $\pi^+\pi^-$  invariant-mass spectra have the following form (Fachini):

$$|y_{\pi}| \leq 1,$$
  
 $|\eta_{\pi}| \leq 0.8,$  (1)  
 $0.2 \text{ GeV} \leq p_{\pi}^{\perp} \leq 2.2 \text{ GeV},$ 

while the bins in  $p_T \equiv |\mathbf{p}_{\pi}^{\perp} + \mathbf{p}_{\pi}^{\perp}|$  start from the range 0.2 - 0.4 GeV, and step up by 0.2 GeV until 2 - 2.4 GeV.

For two-body decays, the relevant formula for the number of pairs of particles  $1 \,$  and  $2 \,$  has the form

$$\frac{dN_{12}}{dM} = \frac{d\delta_{12}}{dM} \frac{bm}{p_1^*} \int_{p_{1,\text{low}}^{\perp}}^{p_{1,\text{high}}^{\perp}} dp_1^{\perp} \int_{y_{1,\text{low}}}^{y_{1,\text{high}}} dy_1 \int_{p_{\text{low}}^{\perp}}^{p_{\text{high}}^{\perp}} dp^{\perp} \int_{y_{\text{low}}}^{y_{\text{high}}} dy \\
\times C_2^0 C_1^{\eta} C_2^{\eta} \frac{\theta(1 - \cos^2 \gamma_0)}{|\sin \gamma_0|} S(p^{\perp}),$$
(2)

#### Lowering the $\rho$ mass

In order to show how the medium modifications will show up in the  $\pi^+\pi^-$  spectrum, we have scaled the  $\pi\pi$  phase shift in the  $\rho$  channel, according to the simple law

$$\delta_1^1(M)_{\text{scaled}} = \delta_1^1(s^{-1}M)_{\text{vacuum}},\tag{3}$$

#### Phase shift vs. spectral density

