Collective dynamics of the p-Pb collisions at the LHC

Wojciech Broniowski^{1,2,3}, Piotr Bożek^{3,4}

¹CEA Saclay, ²UJK Kielce, ³IFJ PAN, ⁴UST AGH Cracow

Chicago, 15-20 September 2013

[based on PLB 718 (2013) 1557, PLB 720 (2013) 250, PRC 88 (2013) 014903, and PB+WB+G. Torrieri, arXiv:1307.5060]

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions:

- Collective flow
- Jet quenching

Flow manifests itself in harmonic components in the momentum spectra (v_n) , in correlation data (ridges), in mass hierarchy of p_T spectra and v_n of identified particles, in certain features of interferometry (femtoscopy), ...

- Ridges found experimentally at the LHC in small systems, p+Pb and p+p (high-multiplicity events)
- Large elliptic and triangular flow measured in p+Pb
- Mass hierarchy recently found in p+A

Collectivity in small systems?

Main questions:

Are the central p-Pb collisions collective?

What is the nature of the initial state and correlations therein? What are the limits/conditions on applicability of hydrodynamics?

Other analyses of collectivity in small systems:

Romatschke, Luzum, arXiv:0901.4588, Prasad et al., arXiv:0910.4844, Bozek, arXiv:0911.2393, Werner et al., arXiv:1010.0400, Deng, Xu, Greiner, arXiv:1112.0470, Yan et al., arXiv: 0912.3342, Bozek, arXiv:1112.0912 Shuryak, Zahed, arXiv:1301.4470, Bzdak et al.,arXiv:1304.3403, Qin, Müller, arXiv:1306.3439, Werner et al., arXiv:1307.4379

3-stage approach

Our three-phase approach: initial \rightarrow hydro \rightarrow statistical hadronization (successful in description of A+A collisions)

- Initial phase Glauber model
- Hydrodynamics 3+1 D viscous event-by-event

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Statistical hadronization

The transverse size in central p+Pb

A typical transverse-plane configuration of the participant nucleons in a $p{+}\mathsf{Pb}$ collision generated with <code>GLISSANDO</code>

5% of collisions have more than 18 participants, rms ~ 1.5 fm – quite large!

Snapshot of peripheral Pb+Pb

5% most central values of N_w in p-Pb fall between the 60-70% and 70-80% centrality class in Pb+Pb Pb+Pb: c=60-70% $\equiv 22 \le N_w \le 40$, c=70-80% $\equiv 11 \le N_w \le 21$

Pb+Pb, N_=18

in Pb+Pb somewhat larger size than in p+Pb (all for $N_w = 18$)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Smearing

Gaussian smearing with width 0.4 fm (physical effect)

two variants: standardcompact(sources at centers of participants)(sources at centers-of-mass of pairs)

Such transverse entropy profiles are fed into e-by-e hydro as initial conditions

▲日▼▲□▼▲□▼▲□▼ □ ののの

Size in p+Pb vs Pb+Pb

smaller size in p+Pb \rightarrow larger entropy density \rightarrow more rapid expansion

All in all, initial conditions in most central p+Pb not very far from peripheral Pb+Pb

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hydrodynamics [Bożek 2011]

3+1 D viscous event-by-event hydrodynamics (viscous corrections essential due to large gradients)

•
$$au_{
m init} = 0.6 \,\, {
m fm/c}, \,\, \eta/s = 0.08 \,\, {
m (shear)}, \, \zeta/s = 0.04 \,\, {
m (bulk)}$$

• freezeout at
$$T_f = 150 \text{ MeV}$$

- average initial temperature in the center of the fireball $T_i = 242 \text{ MeV} (< R^2 >^{1/2} = 1.5 \text{ fm})$, or $319 \text{ MeV} (< R^2 >^{1/2} = 0.9 \text{ fm})$ adjusted to fit multiplicity
- realistic equation of state (lattice + hadron gas [Chojnacki & Florkowski 2007]), viscosity necessary for small systems
- lattice spacing of 0.15 fm (thousands of CPU hours)

isotherms at freeze-out $T_f=150~{\rm MeV}$ for two sections in the transverse plane

evolution lasts about 4 fm/c - shorter but more rapid than in A+A

Statistical Hadronization

Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Factorization of the transverse and longitudinal distributions

alignment of F and B event planes (can be checked experimentally) collimation of flow at distant longitudinal separations \rightarrow ridges!

Surfers - the near-side ridge

Definition of the 2D correlation function

$$C(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta)} = \frac{S(\Delta\eta, \Delta\phi)}{B(\Delta\eta, \Delta\phi)}$$

(more convenient than the "per-trigger" correlations)

Ridge in p-Pb, ATLAS

Projection on $2 \le |\Delta \eta| \le 5$, ATLAS

$$Y(\Delta\phi) = \frac{\int B(\Delta\phi)d(\Delta\phi)}{N}C(\Delta\phi) - b_{\text{ZYAM}}$$

The near-side ridge from our model:

red - $< R^2 >^{1/2} = 1.5$ fm, blue - $< R^2 >^{1/2} = 0.9$ fm

[CGC: Dusling, Venugopalan, arXiv:1210.3890, 1211.3701, 1302.7018]

Ridge in p-Pb

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 ・ 今へぐ

Flow from correlations (two-particle cumulants, η gap) $v_n\{2, |\Delta \eta| > 2 \text{GeV}\}$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

v_2 vs CMS

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 臣 = の Q @

 v_3 vs CMS

 v_3 too large for peripheral collisions \rightarrow limit of validity of the model

<ロ> (日) (日) (日) (日) (日)

æ

LHC: v_2 vs ATLAS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Digression: eccentricity \rightarrow flow

larger fluctuations in the initial distribution \rightarrow larger flow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 v_2 , v_3 vs p_T

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Identified spectra

Linear superposition not enough!

[Bzdak, Skokov, arXiv:1306.5442: Wounded Nucleon Model with experimental pp data at 7 TeV]

Identified $\langle p_T \rangle$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Identified v_2

・ 戸 ・ ・ ヨ ・ ・

3

Identified v_3

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Resonance decays affect the mass ordering!

HBT radii

Interferometric radii due to Bose-Einstein correlations - measure of the size of the system at freeze-out

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusions

Conclusions

- Is there collectivity in small systems?
- \rightarrow collective dynamics is compatible with high-multiplicity LHC soft data for p-Pb
 - Large v_2 and v_3 coefficients measured in p-Pb reproduced, including the p_T dependence
 - Model 2D correlations exhibit the two ridges, in particular the near-side ridge (hydro \rightarrow "surfers") [flow \equiv near-side ridge!]
 - Mass ordering in $\langle p_T \rangle$ and flow coefficients reproduced
 - Model predictions for the interferometric radii for p+Pb are closer to the A+A line, farther from the p+p line - way to distinguish
 - Numerous effects should still be incorporated (jets, core-corona, ...), more important for the lower-multiplicity events