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Density correlations

I—Definitions and framework

Fluctuations in the initial state

Density-density correlator:

x S(x,y) = (p(z)p(y)) — (p(z)){p(v))

< . > - e-by-e average

-7.5
Goal: understand S(x,y) microscopically

[different approach from Coleman-Smith, Petersen, Wolpert 2012 or
Floerchinger-Wiedemann 2013]
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Density-density correlator

S(z,y) carries information on e-by-e fluctuations of observables
(2-body effects): var(O) = [ dzdyO(z)S(z,y)O(y)

Embodies short-range correlations

m autocorrelations

m NN repulsion in colliding nuclei

m correlation formed in the production mechanism
and long-range correlations

m conservation laws

m constraints (e.g., choice of centrality class)

m technical issues (recentering)

(for simplicity all for head-on collisions, b = 0)
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Glauber sources
In each collision n (point-like) sources (wounded nucleon, binary collisions) are
created in the transverse plane with a distribution f,(z1,22,...,z,). Marginal
distributions are

fO (a1, 22) = /dxg...da:nfn(a:l,...,a:n), ) (2) = /dng,?)(xl,xg)
The density is p(x) = 3", 6(x — ;). Then

(p(x)) </dw1 Ay fr (X1, oy Z& (z —x)) = (nfP(x))

S(x,y) = (fN @)z —y)+ (nn = )P (@,9)) = (nf D (@) (nfD ()

Introducing the pair distribution function

9ley) = <p<x>><p<y>>

we may write

S(z,y) = (p(z))d(z — y) + (p(x)){p(y))]g(z,y) — 1]
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Some properties

Sum rules:
/da:p(a:) =n, /da:dyS(a:,y) = var(n)

(sensitivity to constraining n)

The pair distribution function is normalized as

/dwdy(p(w)ﬂp(y»g(%y) = (n(n — 1)) = var(n) + (n)({n) —1).

(increases with the var(n) as expected)
No correlations, fixed n:

1
= 1 —_ =
g(x,y) -
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GLISSANDO 2 is out!

All simulations are carried out with

GLISSANDO 2: GLauber Initial-State Simulation AND mOre..., ver. 2

Maciej Rybczynski, Grzegorz Stefanek, Wojciech Broniowski, Piotr Bozek
e-Print: arXiv:1310.5475
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NN repulsion
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Left: The pair distribution function in the relative distance for the Pb nucleus for the
hard-sphere expulsion (dashed line) and Gaussian correlation (solid line)

Right: projection on the transverse plane — “geometric quenching”

These correlations sneak into the fireball! (~10% effect)
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Analytic model for p+Pb

The probability that p incident at an impact parameter b interacts with N participants
in a given configuration and does not interact with the remaining A — N nucleons

f(si,...84;0) =c10(b—s51)...00b—sn)(1 —0(b—sn41)) ... (1 —0(b—54))T(51,...,54)

c1 - normalization, T' - thickness function, 6(u) - wounding profile
([ dub(u) = ol N = ow)
Since d is small, we can include the 2-body correlations perturbatively

(1 — d(Si, Sj))ZCQT()(Sl) . To(SA) Z(l — d(Sq‘,, Sj))

1 i#]

T(Sh. . .,SA)ZCQT()(S1) .. .To(SA)

i

=5

Then
f(2) (51 8o b) _ 9(b — 81)9([) - SQ)T()(Sl)TO(SQ)(l — d(Sl, 5’2))
50T Tdsidsyf(b — 55)0(b — s5)To(s1)To(s5) (1 — (s, 55))

FD (s138) = / dsof? (51, 52 )
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Results of the analytic model for p+Pb

For simplicity, we take b = 0 and use the Gaussian parameterizations
2

0(u) = Aexp (—;7) , A=092, o0, =108fm (LHC)

(51— s2)°

d(s1,82) = Bexp (— 557 ) , B=0.11, 04 =0.56 fm
d

7l Half-integrated distributions
/ (for visualization in the relative coordinate)

0.92»E
g(a) 0904
088,
0.86\ 3

R(A) = / dr (p(r + A/2))p(r — A/2))

Acttm) \\2\‘\\\)/7/VL2 g(A) = ﬁ /dr (n(n — 1) fP (r + A/2,7 — A/2))
(“Aetna plot”)
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GLISSANDO for p+Pb

9(d)

R@) [fm?

(a) R(A) (b) and g(A) for p+Pb at b= 0 and N = 15.

(full agreement with the analytic model)
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GLISSANDO for Pb+Pb

(for the moment no NN repulsion in the nuclear distributions)
Why do we see the peaks?

Left: g(A) for the Pb+Pb collisions at the impact parameter b = 0 with
0w =20 mb and N,, = 371

Right: Same for with o,, = 68 mb and N,, = 410
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GLISSANDO for Pb+Pb

(for the moment no NN repulsion in the nuclear distributions)
Why do we see the peaks?

Left: g(A) for the Pb+Pb collisions at the impact parameter b = 0 with
0w =20 mb and N,, = 371

Right: Same for with o,, = 68 mb and N,, = 410

Peaks from the twin-production!
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Twin production

Wounded nucleons are created in partnership: one nucleon from nucleus A and one from
nucleus B. The range of the correlation is ~ /o /7. For very small o, they come in
isolated pairs, hence

FP (@i x5) = 8(xi — ;) fV (1), i€ A,j€B (0w —0)

There are N,,/2 such tightly correlated pairs, while the remaining pairs are uncorrelated:

2 (i, 25) = f () £ (%), i, j € different nuclei. This leads to

S(@,y) = 2() (P @)o(@ - y) = 1V @) +varm) O @)D (y).
= 4 [ (pairs) /O (@))3( = ) + (g (npuir = D) D (@) 1O ()]

(pairs are the basic objects)
In the limit 0,, — oo all nucleons are wounded, hence there is no correlation!

For intermediate values of ¢, clusters form and things are complicated
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Same with NN repulsion present

9(0)

(two effects: positive peak from twin production and negative peak from NN
repulsion in projectiles)
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Observables
Radius™:

(Y = (Y2 15) = / do ™ (p(x)), var(r™)ime = / d dy v S (. )

r and r’ — transverse radii corresponding x and y
Eccentricities:

[ d®zrme? p(z) [dxdyrme?r'me —n9' Sz, )
%, var(|en|)ina = —
<T >incl <T >incl
W,, — event-plane angles, ¢ and ¢’ — azimuths corresponding to = and y
No correlations, b = 0:

<€neiqln >incl =

(r ™™ = (")
var(r )i ™ = (n)(r*") + (var(n) — (n))(r")”
(enezq/")in[fclcorr"cemml = 0 (symmetry)
no corr.,central <T2n>

Va“r(|6n | )incl =

(n)(rm)?

To focus on the effects of correlations in the fluctuation measures, we introduce

var(O)inc
R(O) = ———————
©) var(O)fe, o
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Observables in p+Pb

Analytic model:
(B = 0.11 — depth of the “soft-core”, o4 = 0.56 fm — its width, o, = 1.08 fm )

2 4
w(n) + <TL> 040w - + 0O (BQ) =1-0.69B+ 0O (BQ))
wn)+1 (02 4+202)

2 4
Tq%w

2 233
(0(1 + 20u‘)

R(e3) =1—0.09B + O(B?)

R(e2) = 1 — B(w(n) + (n)) + 0 (B*) =1-0.35B+ O(B?)

Small but non-negligible effect (a few %)
Maximum when o,, = 04 — matching of the two scales: probing and internal
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Observables in Pb+Pb

(R = "correlated/uncorrelated”)

GLISSANDO:
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The ratios R at various values of o,,. The corresponding fixed values of
the number of the wounded nucleons is shown on the upper axis
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Observables in Pb+Pb

(R = "correlated/uncorrelated”)
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Left: The ratios R at various values of o,,. The corresponding fixed values
of the number of the wounded nucleons is shown on the upper axis
Right: Same with the NN repulsion included
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Superposition model
n
= Z w;é(x — x;) — varying strength
=1

w; — weights generated independently according to some suitable
distribution. Then (w(w) = var(w) /W)

(p(x)) = WnfM (@)
(w —1]

S(x,y) = (w(w) +w){p(x))d(x —y) + (p(z)){p(y))9(z,y)

@l - D (@)
9@Y) = = N o))

Upon integration over x and y we find the superposition-model formula

var(p) = var(w)(n) + wvar(n)

(w) /W enhances the relative contribution of the autocorrelation term
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Conclusions

m Microscopic understanding achieved

m Smearing: 0(z —y) = d(x —y)

m Short-range correlations assume the form Sgport (2, y) = A(z)d(z — y)
(short range dominance)

m Autocorrelations + NN repulsion in projectiles + twin production

m Long range term ~ f)(z)f((y) from constraining n (in general,
global constraints lead to long-range correlations)

m Correlations affect fluctuation of observables (NN repulsion already
studied in [WB & M. Rybczyriski, PRC 81 (2010) 064909])

m Fluctuations of eccentricities dominated by Sgnort (2, y)
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