Throwing triangles against a wall: ground state of ${ }^{12} \mathrm{C}$ from highest-energy collisions

Wojciech Broniowski

Inst. of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce

Physics Symposium, 24th CBM Week 10 September 2014, Cracow
[research with Enrique Ruiz Arriola, Piotr Bożek, Maciej Rybczyński]

Instead of outline

Two phenomena are related:

α clustering in light nuclei
\downarrow
harmonic flow in ultra-relativistic nuclear collisions

Surprising link:

 lowest-energy ground-state structure \longleftrightarrow highest energy reactions- New method of investigating many-particle nuclear correlations
- Another test of collective dynamics/harmonic flow

α clusters

Some history

David Brink: After Gamow's theory of α-decay it was natural to investigate a model in which nuclei are composed of α-particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that $4 n$-nuclei like ${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O} \ldots$ were composed of α-particles

Fig. 1. Alpha-particle configuration for some $4 N$ nuclei.

α clusters in light nuclei

${ }^{9} \mathrm{Be}$

${ }^{12} \mathrm{C}$
ground

Hoyle 0^{+}
other excited, $2^{+} \ldots$

How can we detect the α clusters in the ground state?
What is their spatial arrangement?
Assessment of n-body correlations (one-body not enough)
[Recent status: SOTANCP3 Conference, Yokohama, May 2014]

Flow

Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

- Lorentz contraction
- Collision: essentially instantaneous passage, frozen configuration
- Reduction of the ground-state wave function of the nucleus (like measurement)

- detection of particles in the transverse direction (mid-rapidity)

Phenomenon of flow

Quark-gluon plasma is formed!

"Initial shape - final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles - follows from collectivity

Merge the two ideas (α 's and flow) \rightarrow

[WB \& ERA, PRL 112 (2014) 112501]

From α clusters to flow in relativistic collisions

α clusters \rightarrow asymmetry of shape \rightarrow asymmetry of initial fireball \rightarrow
\rightarrow hydro or transport \rightarrow collective harmonic flow

nuclear triangular geometry \rightarrow fireball triangular geometry \rightarrow triangular flow
What are the signatures, chances of detection?
(some blurring by fluctuations)
"Easy snap-shot but difficult development"
Described later: ${ }^{3} \mathrm{He}-\mathrm{Au}$ at RHIC [Sickles et al. (PHENIX) 2013]
The case of ${ }^{12} \mathrm{C}$ is more promising, as it leads to more abundant fireballs

Our modeling ${ }^{12} \mathrm{C}$

Three α 's in a triangular arrangement, generate nucleon positions with Monte Carlo, parameters (size of the cluster, distance between clusters) properly adjusted (fit one-body radial distributions from other calculations, fit EM form factor)

${ }^{12} \mathrm{C}_{-}{ }^{208} \mathrm{~Pb}$ - single event

Why ultra-relativistic?

Reaction time is much shorter than time scales of the structure \rightarrow a frozen "snapshot" of the nuclear configuration

wounding range determined by $\sigma_{\mathrm{NN}}^{\text {inel }}$
($N_{w}>70$ - flat-on orientation)

Imprints of the three α clusters clearly visible

Simulations with GLISSANDO 2

Our intrinsic distributions in ${ }^{12} \mathrm{C}$: three α 's in a triangular arrangement

Geometry of nucleus \rightarrow geometry of fireball

Triangular nucleus causes triangular "damage"!

intrinsic density of ${ }^{12} \mathrm{C} \quad \rightarrow \quad$ geometry of the fireball (flat-on collision)

Eccentricity parameters

We need some quantitative measures of deformation (heavily used in heavy-ion analyses)

Eccentricity parameters ϵ_{n} (Fourier analysis)

$$
\epsilon_{n} e^{i n \Phi_{n}}=\frac{\sum_{j} \rho_{j}^{n} e^{i n \phi_{j}}}{\sum_{j} \rho_{j}^{n}}
$$

describe the shape of each event (j labels the sources in the event, $n=$ rank, Φ_{n} is the principal axis angle)
$n=2$ - ellipticity, $n=3$ - triangularity, \ldots
Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations

Geometry vs multiplicity correlations in ${ }^{12} \mathrm{C}-\mathrm{Pb}$

Two cases of angular orientation

cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity
 higher triangularity lower ellipticity

lower multiplicity lower triangularity higher ellipticity

Ellipticity and triangularity vs multiplicity

Clusters: (qualitative signal!)

When $N_{w} \nearrow$ then $\left\langle\epsilon_{3}\right\rangle \nearrow$ and $\left\langle\epsilon_{2}\right\rangle \searrow$
and $\left\langle\sigma\left(\epsilon_{3}\right) / \epsilon_{3}\right\rangle \searrow,\left\langle\sigma\left(\epsilon_{2}\right) / \epsilon_{2}\right\rangle \nearrow$
No clusters:
similar behavior for $n=2$ and $n=3$

Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. Linear response:
v_{n} grows with ϵ_{n}

[Bożek $3+1$ viscous hydro + THERMINATOR]

Hydro without hydro

We have to a very good approximation

$$
v_{n}=\kappa_{n} \epsilon_{n}, \quad n=2,3, \ldots
$$

(κ_{n} depends on mutiplicity and hydro details)

Cumulant moments:

$$
\epsilon_{n}\{2\}^{2}=\left\langle\epsilon_{n}^{2}\right\rangle, \epsilon_{n}\{4\}^{4}=2\left\langle\epsilon_{n}^{2}\right\rangle-\left\langle\epsilon_{n}^{4}\right\rangle
$$

Ratio's insensitive to response:

$$
\frac{v_{n}\{m\}}{v_{n}\{2\}}=\frac{\epsilon_{n}\{m\}}{\epsilon_{n}\{2\}}, \quad m=4,6, \ldots
$$

(infer info on flow from just the eccentricities, no hydro!)

Cumulant moments

wounded nucleon model

Ratios of cumulant moments

$v_{n}\{4\} / v_{n}\{2\} \quad$ (wounded)

Double ratio of cumulant moments

${ }^{3} \mathrm{He}-\mathrm{Au}$

${ }^{3} \mathrm{He}-\mathrm{Au}$

(being presently analyzed by PHENIX)
[hydro: J. Nagle et al., arXiv:1312.4565] [hydro without hydro: Piotr Bożek and WB, arXiv:1409.2160]

${ }^{3} \mathrm{He}-\mathrm{Au}$

(being presently analyzed by PHENIX)
[hydro: J. Nagle et al., arXiv:1312.4565] [hydro without hydro: Piotr Bożek and WB, arXiv:1409.2160]

(not equilateral)

Ratio for ${ }^{3} \mathrm{He}-\mathrm{Au}$

(to be confirmed by the experiment!)

Conclusions

Nuclear structure from ultra-relativistic heavy ion collisions

Snapshots of the ground-state wave function
Spatial correlations in the ground state \rightarrow harmonic flow
Signatures in clustered ${ }^{12} \mathrm{C}_{-}{ }^{208} \mathrm{~Pb}$ collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Anticorrelation of ellipticity and triangularity
- Very clear signals from ratios of cumulant moments
- Stronger effect at lower $\sigma_{N N}^{\text {inel }}$ (i.e., at lower collision energies)
- Even stronger effect on the ${ }^{12} \mathrm{C}$ side in rapidity
- Ratios depend on the nuclear wave function and the initial-state model, but not on hydro

Possible data (NA61@SPS, RHIC) would allow to place constrains on the spatial structure of the light projectile. Conversely, the knowledge of the nuclear distributions helps to verify the fireball formation models

Back-up

Intrinsic distributions

Ground state of ${ }^{12} \mathrm{C}$ is a 0^{+}state (rotationally symmetric wave function). The meaning of deformation concerns multiparticle correlations between the nucleons

Superposition over orientations:

$$
\left|\Psi_{0^{+}}\left(x_{1}, \ldots, x_{N}\right)\right\rangle=\frac{1}{4 \pi} \int d \Omega \Psi_{\mathrm{intr}}\left(x_{1}, \ldots, x_{N} ; \Omega\right)
$$

The intrinsic density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes: $f_{n}^{\text {intr }}(\vec{x})=\left\langle f\left(R\left(-\Phi_{n}\right) \vec{x}\right)\right\rangle$. Brackets indicate averaging over events and $R\left(-\Phi_{n}\right)$ is the inverse rotation by the principal-axis angle in each event

Dependence on the collision energy

Qualitative conclusions hold from SPS to the LHC

Other systems (distributions matched to Wiringa's et al. radial densities)

[work with Maciej Rybczyński]

