
# Throwing triangles against a wall: ground state of $^{12}\text{C}$ from highest-energy collisions

#### Wojciech Broniowski

Inst. of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce



Physics Symposium, 24th CBM Week 10 September 2014, Cracow

[research with Enrique Ruiz Arriola, Piotr Bożek, Maciej Rybczyński]

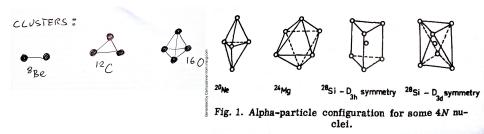
#### Instead of outline

#### Two phenomena are related:

lpha clustering in light nuclei

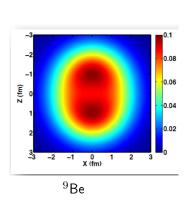
harmonic flow in ultra-relativistic nuclear collisions

#### Surprising link:


lowest-energy ground-state structure  $\longleftrightarrow$  highest energy reactions

- New method of investigating many-particle nuclear correlations
- Another test of collective dynamics/harmonic flow

## lpha clusters


### Some history

David Brink: After Gamow's theory of  $\alpha$ -decay it was natural to investigate a model in which nuclei are composed of  $\alpha$ -particles. Gamow developed a rather detailed theory of properties in his book "Constitution of Nuclei" published in 1931 before the discovery of the neutron in 1932. He supposed that 4n-nuclei like <sup>8</sup>Be, <sup>12</sup>C, <sup>16</sup>O … were composed of  $\alpha$ -particles



Generated by CamScanner from intsig.com

### lpha clusters in light nuclei

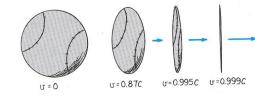




ground

Hoyle  $0^+$ 

other excited,  $2^+$  ...

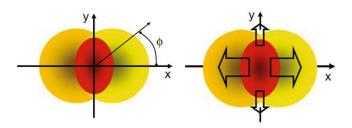

How can we detect the  $\alpha$  clusters in the ground state? What is their spatial arrangement? Assessment of n-body correlations (one-body not enough)


[Recent status: SOTANCP3 Conference, Yokohama, May 2014]

## Flow

## Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

- Lorentz contraction
- Collision: essentially instantaneous passage, frozen configuration
- Reduction of the ground-state wave function of the nucleus (like measurement)



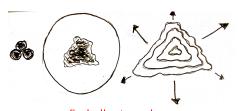



 detection of particles in the transverse direction (mid-rapidity)

#### Phenomenon of flow

Quark-gluon plasma is formed!




"Initial shape - final flow" transmutation detectable in the asymmetry of the momentum distribution of detected particles - follows from collectivity

## Merge the two ideas ( $\alpha$ 's and flow) $\rightarrow$

[WB & ERA, PRL 112 (2014) 112501]

#### From $\alpha$ clusters to flow in relativistic collisions

 $\alpha$  clusters  $\to$  asymmetry of shape  $\to$  asymmetry of initial fireball  $\to$   $\to$  hydro or transport  $\to$  collective harmonic flow

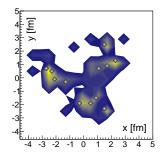


nuclear triangular geometry o fireball triangular geometry o triangular flow

What are the signatures, chances of detection? (some blurring by fluctuations)
"Easy snap-shot but difficult development"

Described later: <sup>3</sup>He–Au at RHIC [Sickles et al. (PHENIX) 2013] The case of <sup>12</sup>C is more promising, as it leads to more abundant fireballs

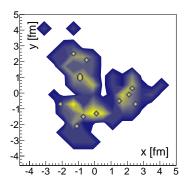
## Our modeling $^{12}\mathsf{C}$

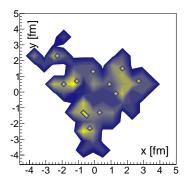

Three  $\alpha$ 's in a triangular arrangement, generate nucleon positions with Monte Carlo, parameters (size of the cluster, distance between clusters) properly adjusted (fit one-body radial distributions from other calculations, fit EM form factor)

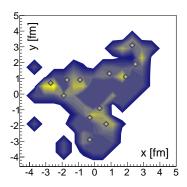


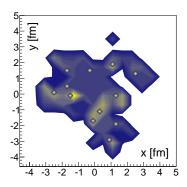
## $^{12}\text{C-}^{208}\text{Pb}$ – single event

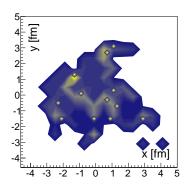
#### Why ultra-relativistic?

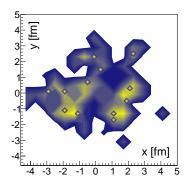

Reaction time is much shorter than time scales of the structure  $\rightarrow$  a frozen "snapshot" of the nuclear configuration

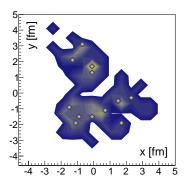


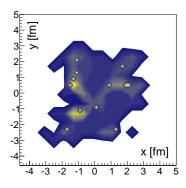


wounding range determined by  $\sigma_{
m NN}^{
m inel}$ 


 $(N_w > 70$  - flat-on orientation)

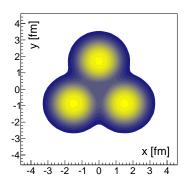

Imprints of the three lpha clusters clearly visible



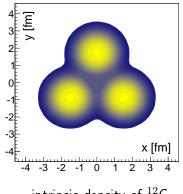





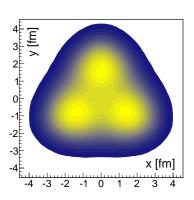








Our intrinsic distributions in  $^{12}\mathrm{C}$ : three lpha's in a triangular arrangement




## Geometry of nucleus $\rightarrow$ geometry of fireball

#### Triangular nucleus causes triangular "damage"!



intrinsic density of  $^{12}\mathrm{C}$ 



geometry of the fireball (flat-on collision)

### Eccentricity parameters

We need some quantitative measures of deformation (heavily used in heavy-ion analyses)

Eccentricity parameters  $\epsilon_n$  (Fourier analysis)

$$\epsilon_n e^{in\Phi_n} = \frac{\sum_j \rho_j^n e^{in\phi_j}}{\sum_j \rho_j^n}$$

describe the shape of each event (j labels the sources in the event,  $n{=}{\rm rank},~\Phi_n$  is the principal axis angle)

n=2 - ellipticity, n=3 - triangularity, . . .

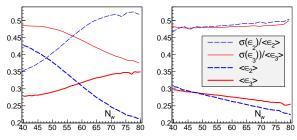
#### Two components:

- intrinsic (from existent mean deformation of the fireball)
- from fluctuations



## Geometry vs multiplicity correlations in $^{12}$ C-Pb

#### Two cases of angular orientation


cluster plane parallel or perpendicular to the transverse plane:





higher multiplicity higher triangularity lower ellipticity lower multiplicity lower triangularity higher ellipticity

## Ellipticity and triangularity vs multiplicity



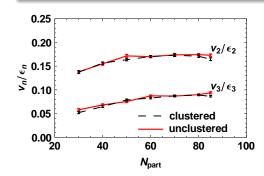
clustered

unclustered

### Clusters: (qualitative signal!)

When  $N_w \nearrow$  then  $\langle \epsilon_3 \rangle \nearrow$  and  $\langle \epsilon_2 \rangle \searrow$ 

and  $\langle \sigma(\epsilon_3)/\epsilon_3 \rangle \searrow$ ,  $\langle \sigma(\epsilon_2)/\epsilon_2 \rangle \nearrow$ 


#### No clusters:

similar behavior for n=2 and n=3

## Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on collective dynamics) into asymmetry of the transverse-momentum flow. Linear response:

 $v_n$  grows with  $\epsilon_n$ 



[Bożek 3+1 viscous hydro + THERMINATOR]

## Hydro without hydro

#### We have to a very good approximation

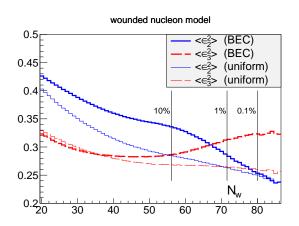
$$v_n = \kappa_n \epsilon_n, \quad n = 2, 3, \dots$$

 $(\kappa_n$  depends on mutiplicity and hydro details)

Cumulant moments:

$$\epsilon_n \{2\}^2 = \langle \epsilon_n^2 \rangle, \ \epsilon_n \{4\}^4 = 2 \langle \epsilon_n^2 \rangle - \langle \epsilon_n^4 \rangle$$

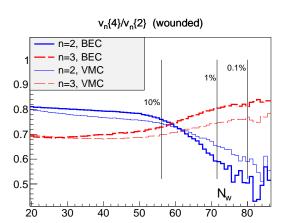
#### Ratio's insensitive to response:


$$\frac{v_n\{m\}}{v_n\{2\}} = \frac{\epsilon_n\{m\}}{\epsilon_n\{2\}}, \quad m = 4, 6, \dots$$

(infer info on flow from just the eccentricities, no hydro!)

#### Cumulant moments

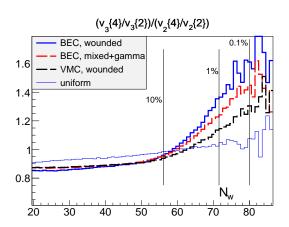







## Ratios of cumulant moments



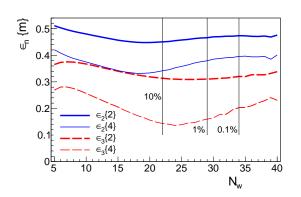





#### Double ratio of cumulant moments





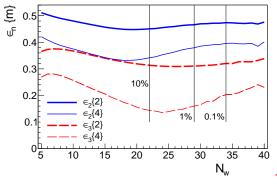


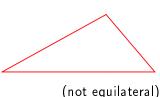

## <sup>3</sup>He-Au

## <sup>3</sup>He-Au

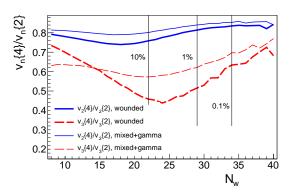
(being presently analyzed by PHENIX)

[hydro: J. Nagle et al., arXiv:1312.4565] [hydro without hydro: Piotr Bożek and WB, arXiv:1409.2160]





## <sup>3</sup>He-Au

(being presently analyzed by PHENIX)


[hydro: J. Nagle et al., arXiv:1312.4565]

[hydro without hydro: Piotr Bożek and WB, arXiv:1409.2160]





## Ratio for <sup>3</sup>He-Au



(to be confirmed by the experiment!)

## Conclusions

## Nuclear structure from ultra-relativistic heavy ion collisions

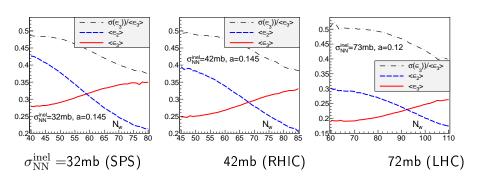
Snapshots of the ground-state wave function Spatial correlations in the ground state  $\rightarrow$  harmonic flow Signatures in clustered  $^{12}\text{C-}^{208}\text{Pb}$  collisions

- Increase of triangularity with multiplicity for the highest multiplicity events
- Anticorrelation of ellipticity and triangularity
- Very clear signals from ratios of cumulant moments
- ullet Stronger effect at lower  $\sigma_{NN}^{
  m inel}$  (i.e., at lower collision energies)
- ullet Even stronger effect on the  $^{12}{
  m C}$  side in rapidity
- Ratios depend on the nuclear wave function and the initial-state model, but not on hydro

Possible data (NA61@SPS, RHIC) would allow to place constrains on the spatial structure of the light projectile. Conversely, the knowledge of the nuclear distributions helps to verify the fireball formation models

## Back-up

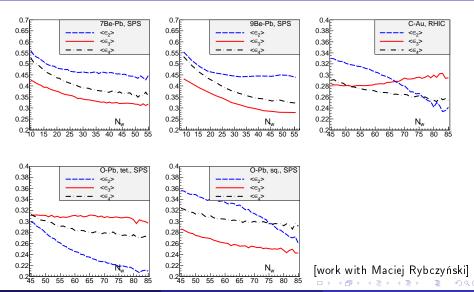
#### Intrinsic distributions


Ground state of  $^{12}\text{C}$  is a  $0^+$  state (rotationally symmetric wave function). The meaning of *deformation* concerns multiparticle correlations between the nucleons

Superposition over orientations:

$$|\Psi_{0+}(x_1,\ldots,x_N)\rangle = \frac{1}{4\pi} \int d\Omega \Psi_{\rm intr}(x_1,\ldots,x_N;\Omega)$$

The *intrinsic* density of sources of rank n is defined as the average over events, where the distributions in each event have aligned principal axes:  $f_n^{\rm intr}(\vec x) = \langle f(R(-\Phi_n)\vec x) \rangle$ . Brackets indicate averaging over events and  $R(-\Phi_n)$  is the inverse rotation by the principal-axis angle in each event


## Dependence on the collision energy



Qualitative conclusions hold from SPS to the LHC

## Other systems

## (distributions matched to Wiringa's et al. radial densities)

