Correlations in p-Pb collisions

Wojciech Broniowski

IFJ PAN Cracow & UJK Kielce

12th Zimanyi Winter School on Heavy Ion Physics, Budapest, 3-7 December 2012

[Piotr Bożek & WB, PRL 109 (2012) 062301 and arXiv:1211.0845] – see for references

Definition

$$R_2(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta)}$$

Definition

$$R_2(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta)}$$

30-40%

▲御▶ ▲ 副≯

≣ ▶

Sources of correlations

- \blacksquare jets \rightarrow central peak (same jet), away-side ridge (back-to-back jets)
- **collective harmonic flow** \rightarrow **near-** and away-side ridges
- \blacksquare charge balancing \rightarrow central peak, shape of the near-side ridge

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- resonance decays \rightarrow away-side ridge
- $\blacksquare \text{ Bose-Einstein} \rightarrow \text{central peak}$
- Coulomb, final-state, ...

Ridges

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ э

[from G. Moschelli]

ALICE

1.1.5 -1 -0.5 0 ATL p-p

Physics World

One possible interpretation of the ridge is that the collision creates a dense full of many quarks and gluons – a quark-gluon glasma –

Pb-Pb

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 - のへで

p-Pb from CMS, 5.02 TeV

(released in October) "Observation of long-range near-side angular correlations in proton-lead collisions at the LHC", CMS Collaboration

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Physics World again physicsworld.com Search Home News Blog Multimedia Indepth Jobs Events News archive Unexpected 'ridge' seen in CMS -2012 collision data again November 2012 Oct 31, 2012 @6 comments October 2012 September 2012 August 2012 July 2012 June 2012 May 2012 Share this April 2012 March 2012 February 2012 StumbleUpon January 2012 - Twitter 2011 p-Pb collision event display, CMS E Facebook 2010 The first data from proton-lead collisions at the Compact Muon Connotea 2009 Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at > 2008 E CiteUlike CERN include a "ridge" structure in correlations between newly 2007 generated particles. According to theorists in the US, the ridge may > 2006 represent a new form of matter known as a "colour glass > 2005 condensate" Related stories > 2004 > 2003 This is not the first time such correlations have been seen in > 2002 collision remnants - in 2005, physicists working on the Relativistic 2001 Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory in New liquid > 2000 York found that the particles generated in collisions of gold nuclei strings 1999 had a tendency to spread transversely from the beam at very small relative angles, close to zero. A similar correlation was seen in 2010 1998 at CMS in proton-proton collisions and then later that year in 1997 lead-lead collisions. (See image below, parts a and b.) by CMS **Observing ridges Related links** When a graph is plotted of the fraction of particles versus the relative

Transverse emission angle and the relative angle to the beam axis, the correlation appears as a distinct ridge. Now, this ridge has been seen in proton-lead collisions for the first time – within a week of data collection at CMS (see image below, part c) (arXiv:1210.5482).

Fluctuations

Our approach ("Standard Model of heavy-ion collisions"): initial \rightarrow hydro \rightarrow statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Fluctuations

Our approach ("Standard Model of heavy-ion collisions"): initial \rightarrow hydro \rightarrow statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei
- Hydrodynamics deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

Main result: **Central p-Pb collisions are hydro-like** – near-side ridge appears naturally

ション ふゆ くち くち くち くち

Initial fluctuations in the Glauber approach

two typical configuration of wounded nucleons in the transverse plane generated with GLISSANDO, smearing with Gaussians of width 0.7 fm

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hydrodynamics [Bożek 2011]

3+1D viscous event-by-event hydrodynamics, tuned to reproduce the one-body **RHIC** data standard set of parameters: $\tau_{\text{init}} = 0.6 \text{ fm/c}, \ \eta/s = 0.08 \text{ (shear)}, \ \zeta/s = 0.04 \text{ (bulk)}, \ T_f = 150 \text{ MeV}$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

 $\eta_{\text{init}} = 0.0 \text{ m/c}, \eta/s = 0.08 \text{ (shear)}, \zeta/s = 0.04 \text{ (Chojnacki-Florkowski EoS)}$

viscosity necessary for small systems

Some results for RHIC

[Bożek 2011]

sample results \rightarrow it works for one-body observables

solid: e-by-e, dashed: averaged initial condition

correlations in p-Pb Hydrodynamics]

Final fluctuations

Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR), transverse-momentum conservation approximately imposed, charge balancing \rightarrow central peak

Charge balancing (from resonance decays and "direct")

transverse-plane view of the expanding system at freeze-out

direct balancing: particle-antiparticle pair emitted from the neutral hydrodynamic medium at freeze-out from the same space-time point, e.g., $\pi^+\pi^-$, K^+K^- , $p\bar{p}$, ..., $\Delta^0\bar{\Delta}^0$... resonances also contribute special kind of clusters many ways to modify/improve

STAR vs model, Au+Au

(like sign, $0.8 < p_T < 4$ GeV, balanced)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

no central peak for like-sign pairs, correct "offsets" - compare to Takahashi et at. 2009, Sharma et al. 2011

STAR vs model, Au+Au

(unlike sign, $0.8 < p_T < 4$ GeV, balanced)

central peak for unlike-sign pairs, correct "offsets" - compare to Takahashi et at. 2009, Sharma et al. 2011

2D balance functions

[see also talk by Panos Christakoglu]

$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

2D balance functions

[see also talk by Panos Christakoglu]

$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

∃⇒

2D balance functions

[see also talk by Panos Christakoglu]

$$B(\Delta \eta, \Delta \phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

2D balance functions, Au+Au

Crucial role of charge balancing

<ロト < 四ト < 回ト < 回ト < 回ト

æ

2D balance functions, Au+Au

Crucial role of charge balancing

small (resonance decays only)

big (direct balancing)

balancing + flow \rightarrow collimation important non-flow effect, a way to look at the data (flow effects in correlations \equiv obtainable by folding the single-particle distributions containing flow)

Balance functions in relative pseudrapidity $\Delta \eta$, Au+Au

[Jeon & Pratt 2002, Bass et al. 2010, Bożek et al. 2005]

Marginal distribution of the above 2D function: the charge balance function in $\Delta\eta$

comparison to the STAR data for Au+Au at 200 GeV

Balance functions in relative azimuth $\Delta \phi$, Au+Au

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Balance functions in relative azimuth $\Delta \phi$, Au+Au

▲口▶ ▲圖▶ ▲直▶ ▲直▶ 三直 めんの

 $v_n^2(\Delta\eta)$ in Au+Au

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing ightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

(日) (四) (日) (日)

= 990

 $v_n^2(\Delta\eta)$ in Au+Au

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing ightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

= 900

 $v_n^2(\Delta\eta)$ in Au+Au

 $v_n^2(\Delta \eta) = \int d\Delta \phi/(2\pi) \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$

comparison to extracted STAR data (HBT removed), v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely **flat**

balancing ightarrow explanation of the fall-off of the same-side ridge in $\Delta\eta$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

= 900

Back to p-Pb

Ridge in p-Pb, CMS

Projection on $2 \leq |\Delta \eta \leq 4|$

Dusling & Venugopalan

prediction from glasma+BFKL, arXiv:1210.3890

dashed - pp, solid - pPb, no near-side ridge!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Dusling & Venugopalan 2 update in arXiv:1211.3701

Appearance of same-side ridge

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Flow in p-Pb

possible to measure directly in the experiment

< ロ > < 同 > < 回 > < 回 >

æ

Flow

$$\rho_{2}^{\text{phys}}(\Delta\phi,\Delta\eta) = \frac{1}{2\pi} \int d\phi_{1} d\phi_{2} d\eta_{1} d\eta_{2} \rho_{1}(\phi_{1},\eta_{1}) \rho_{1}(\phi_{2},\eta_{2}) \delta_{\Delta\phi-\phi_{2}+\phi_{1}} \delta_{\Delta\eta-\eta_{2}-\eta_{1}} + \rho_{c}(\Delta\phi,\Delta\eta)$$

$$\rho_{2}^{\text{mixed}}(\Delta\eta) = \frac{1}{(2\pi)^{2}} \int d\Psi d\phi_{1} d\phi_{2} d\eta_{1} d\eta_{2} \rho_{1}(\phi_{1},\eta_{1}) \rho_{1}(\phi_{2}-\Psi,\eta_{2}) \delta_{\Delta\phi-\phi_{2}+\phi_{1}} \delta_{\Delta\eta-\eta_{2}-\eta_{1}}$$

$$\rho_{1}(\phi,\eta) = n(\eta) [1 + 2\sum_{n} v_{n}(\eta) \cos(n\phi - \Psi_{n})$$

$$R_{2} = \frac{\langle \int d\eta_{1} d\eta_{2} n(\eta_{1}) n(\eta_{2}) \left[1 + 2\sum_{n} v_{n}(\eta_{1}) v_{n}(\eta_{2}) \cos(n\Delta\phi)\right] \delta_{\Delta\eta-\eta_{2}+\eta_{1}} + \rho_{c}\rangle_{\text{events}}}{\langle \int d\eta_{1} d\eta_{2} n(\eta_{1}) n(\eta_{2}) \delta_{\Delta\eta-\eta_{2}+\eta_{1}}\rangle_{\text{events}}} = 1 + 2\sum_{n} \frac{v_{n}^{2}(\Delta\eta) \cos(n\Delta\phi)}{(\text{includes nonflow})}$$

spectra and flow coefficients as functions of η yield $v_n^2(\Delta \eta)$ only if $\rho_c = 0$ e-by-e \rightarrow presence of odd harmonics also for symmetric collisions

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

''Longitudinal'' ($\Delta\eta\sim 0)$ ridge

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

back-to-back emission for soft particles

correlations in p-Pb p-Pb at LHC

p-p in ALICE, Małgorzata Janik @ WPCF 2012

PP 7 TeV Multiplicity dependence

Longitudinal ridge in p-p from CMS

Conclusions

- E-by-e hydro in semi-quantitative agreement with the (soft) data for 2-particle 2D correlations from RHIC and LHC for A-A and p-A collisions
- Charge balancing combined with flow explains the shape of the same-side ridge for $\Delta\eta<\sim 1$ and $\Delta\phi$ major non-flow effect
- \blacksquare The fall-off of the flow coefficients $v_n^2(\Delta\eta)$ in A-A reproduced
- Charge balancing increases $v_n^2\{2\}$ by a few % and splits the like-sign and unlike-sign combinations

 \rightarrow late charge separation

Hydrodynamic explanation of the same-side ridge in p-Pb

 \rightarrow collective behavior in high-multiplicity small systems

Longitudinal ridge