Gravitational form factor of the pion

Wojciech Broniowski

Jan Kochanowski University, Kielce & Institute of Nuclear Physics PAN, Cracow

research with Enrique Ruiz Arriola

Problems in multi-quark states, Bled, 29 June - 6 July 2009

イロト イポト イヨト イヨト

- Gravitational and higher-order form factors of the pion in chiral quark models, WB, Enrique Ruiz Arriola, Phys. Rev. D78 (2008) 094011
- Generalized parton distributions of the pion in chiral quark models and their QCD evolution, WB, ERA, Krzysztof Golec-Biernat, Phys. Rev. D77 (2008) 034023
- Pion-photon Transition Distribution Amplitudes in the Spectral Quark Model, WB, ERA, Phys. Lett. B649 (2007) 49
- Photon distribution amplitudes and light-cone wave functions in chiral quark models, Alexander E. Dorokhov, WB, ERA, Phys. Rev. D74 (2006) 054023

Other groups:

- Praszałowicz, Rostworowski, Bzdak, Kotko (Jagellonian)
- Noguera, Vento, Theussl, Courtoy (Valencia)
- Tiburzi, Miller (Seattle)

Form factors

Nucleon Pion Chiral quark models The basic scheme

Distribution of charge

$$Q = \int d^3 r \rho(r), \qquad F(q^2) = \frac{1}{Q} \int d^3 r e^{-i\vec{q}\cdot\vec{r}} \rho(r)$$

イロト イロト イヨト イヨト

æ

Form factors

Nucleon Pion Chiral quark models The basic scheme

Distribution of charge

$$\begin{split} Q &= \int d^3 r \rho(r), \qquad F(q^2) = \frac{1}{Q} \int d^3 r e^{-i\vec{q}\cdot\vec{r}} \rho(r) \\ &= \frac{1}{Q} \int d^3 r \, \rho(r) [1 - i\vec{q}\cdot\vec{r} - \frac{1}{2}(\vec{q}\cdot\vec{r})^2 + \dots] = 1 - \frac{q^2}{6Q} \int d^3 r \, r^2 \rho(r) + \dots \\ &\quad \langle r^2 \rangle = -6 \frac{d}{dq^2} F(q^2) \end{split}$$

WB Gravitational form factor

Form factors Nucleon Pion Chiral quark models The basic scheme

Electromagnetic form factor of the pion from TJLAB

Form factors Nucleon Pion

Chiral quark models The basic scheme

Gravitational form factor

Electromagnetic current: $J^{\mu}_{V} = \sum_{q=u,d,\dots} \bar{q}(x) \frac{\tau_{a}}{2} \gamma^{\mu} q(x)$

WB Gravitational form factor

イロン イボン イヨン イヨン

Form factors Nucleon Pion Chiral quark models The basic scheme

Gravitational form factor

Electromagnetic current: $J^{\mu}_V = \sum_{q=u,d,\dots} \bar{q}(x) \tfrac{\tau_a}{2} \gamma^{\mu} q(x)$

Energy-momentum tensor: $\Theta^{\mu\nu} = \sum_{q=u,d,\dots} \bar{q}(x) \frac{\mathrm{i}}{2} \left(\gamma^{\mu} \partial^{\nu} + \gamma^{\nu} \partial^{\mu} \right) q(x) + \text{gluons}$

For the pion two structures (form factors):

$$\langle \pi^{b}(p') \mid \Theta^{\mu\nu}(0) \mid \pi^{a}(p) \rangle = \frac{1}{2} \delta^{ab} \left[(g^{\mu\nu}q^{2} - q^{\mu}q^{\nu})\Theta_{1}(q^{2}) + 4P^{\mu}P^{\nu}\Theta_{2}(q^{2}) \right]$$

(
$$\Theta_1$$
 - spin-2, Θ_2 - spin-0)

How to determine Θ_1 and Θ_2 ?

Lattices, exclusive high-energy processes – no need to scatter gravitons!

・ロト ・ ア・ ・ ヨト ・ モー・

Form factors Nucleon Pion Chiral quark models The basic scheme

Nucleon

Form factors Nucleon Pion Chiral quark models The basic scheme

Full-QCD lattice results, pion

The electromagnetic form factor (left) and quark part of the spin-2 gravitational form factor (right) in SQM (solid line) and NJL model (dashed line) compared to the lattice data from [Brömmel 2005/7].

(日) (同) (三) (

Form factors Nucleon Pion **Chiral quark models** The basic scheme

Chiral quark models

- $\bullet~$ soft regime $\rightarrow~$ chiral sym. breaking
- NJL (Nobel 2008), instanton liquid, DSE
- relatively few parameters (traded for f_{π}, m_{π}, \dots)
- very many processes can be computed!
- no confinement careful not to open the qq threshold

Form factors Nucleon Pion Chiral quark models **The basic scheme**

Example: Deep Inelastic Scattering

$$Q^2 = -q^2, \ x = \frac{Q^2}{2p \cdot q}, \ Q^2 \to \infty$$

Factorization of soft and hard processes, Wilson's OPE, twist expansion

$$\langle J(q)J(-q)\rangle = \sum_{i} C_{i}(Q^{2};\mu)\langle \mathcal{O}_{i}(\mu)\rangle, \ F(x,Q) = F_{0}(x,\alpha(Q)) + \frac{F_{2}(x,\alpha(Q))}{Q^{2}} + \dots$$

The soft matrix element can be computed in low-energy models! $F_i(x, \alpha(Q_0))|_{\text{model}} = F_i(x, \alpha(Q_0))|_{\text{QCD}}, \quad Q_0 - \underbrace{\text{the matching scale}}_{=} \\ + \underbrace{\text{scale}}_{=} \\ + \underbrace{\text{sc$

WB Gravitational form factor

Form factors Nucleon Pion Chiral quark models **The basic scheme**

QCD evolution

inclusion of gluons

- Here: DGLAP (good for intermediate x)
- Chiral quark models provide **dynamically** the non-perturbative initial conditions for the QCD evolution
- Inclusive and exclusive high-energy processes and lattice
 colculations provide the relevant data to verify the scheme .

Form factors Nucleon Pion Chiral guark models The basic scheme

Exclusive processes in QCD

WB

Properties of GPDs Quark-model evaluation

Definition of Generalized Parton Distributions

Twist-2 even-parity GPDs of the pion non-singlet:

$$\mathcal{H}^{q,I=1}(x,\zeta,t) = \int \frac{dz^{-}}{4\pi} e^{ixp^{+}z^{-}} \langle \pi^{+}(p+q)|\bar{\psi}(0)[0,z]\gamma^{+}\tau_{3}\psi(z)|\pi^{+}(p)\rangle \big|_{z^{+}=0,z^{\perp}=0}$$

(similarly for singlet quarks and gluons)

 $p^2 = m_{\pi}^2$, $q^2 = -2p \cdot q = t$, $\zeta = q^+/p^+$ ζ - momentum transfer along the light cone ([0, z] = 1 in the light-cone gauge)

・ロト ・ ア・ ・ ヨト ・ モー・

Properties of GPDs Quark-model evaluation

Reviews:

- K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47 (2001) 401, hep-ph/0106012
- M. Diehl, Phys. Rept. 388 (2003) 41, hep-ph/0307382
- A. V. Belitsky, A. V. Radushkin, Phys.Rept.418(2005)1, hep-ph/0504030

GPDs provide very rich information of the structure of hadrons, encoding form factors, PDFs, ... Data may come from such processes as $ep \rightarrow ep\gamma$, $\gamma p \rightarrow pl^+l^-$, $ep \rightarrow epl^+l^-$, or from lattices. Small cross sections of exclusive processes require very high accuracy experiments. First results for the nucleon are coming from HERMES and CLAS, also COMPASS, H1, ZEUS

・ロト ・ 同ト ・ ヨト ・ ヨト

Properties of GPDs Quark-model evaluation

Formal features

Symmetric notation:
$$\xi = \frac{\zeta}{2-\zeta}$$
, $X = \frac{x-\zeta/2}{1-\zeta/2}$, with $0 \le \xi \le 1$, $-1 \le X \le 1$

$$H^{I=0}(X,\xi,t) = -H^{I=0}(-X,\xi,t), \ H^{I=1}(X,\xi,t) = H^{I=1}(-X,\xi,t).$$

For $X\geq 0$ we have $\mathcal{H}^{I=0,1}(X,0,0)=q(X)$ - the usual PDF

The following **sum rules** hold:

$$\begin{aligned} \forall \xi : \qquad \int_{-1}^{1} dX \, H^{I=1}(X,\xi,t) &= 2F_V(t), \\ \int_{-1}^{1} dX \, X \, H^{I=0}(X,\xi,t) &= 2\theta_2(t) - 2\xi^2 \theta_1(t), \end{aligned}$$

where $F_V(t)$ is the electromagnetic form factor, while $\theta_1(t)$ and $\theta_2(t)$ are the gravitational form factors (related to the charge conservation and the momentum sum rule in DIS)

Properties of GPDs Quark-model evaluation

The **polynomiality** conditions (Lorentz invariance, time reversal, and hermiticity):

$$\int_{-1}^{1} dX \, X^{2j} \, H^{I=1}(X,\xi,t) = 2 \sum_{i=0}^{j} A_{2j+1,2i}(t) \xi^{2i},$$

(similarly for singlet) A's – generalized form factors (GFFs)

Another way to look at GFFs:

$$\langle \pi^{+}(p') | \overline{u}(0) \gamma^{\{\mu} \stackrel{\sim}{iD}_{\mu_{1}i} \stackrel{\sim}{D}_{\mu_{2}} \dots \stackrel{\sim}{iD}_{\mu_{n-1}}^{\mu_{n-1}\}} u(0) | \pi^{+}(p) \rangle = 2P^{\{\mu} P^{\mu_{1}} \dots P^{\mu_{n-1}\}} A_{n0}(t) + 2 \sum_{\substack{k=2\\\text{even}}}^{n} q^{\{\mu} q^{\mu_{1}} \dots q^{\mu_{k-1}} P^{\mu_{k}} \dots P^{\mu_{n-1}\}} 2^{-k} A_{nk}(t)$$

Properties of GPDs Quark-model evaluation

The **positivity bound**:

$$H_q(X,\xi,t)| \le \sqrt{q(x_{\rm in})q(x_{\rm out})}, \quad \xi \le X \le 1.$$

where $x_{in} = (x + \xi)/(1 + \xi)$, $x_{out} = (x - \xi)/(1 - \xi)$.

Finally, a **low-energy theorem** $H_{I=1}(2z - 1, 1, 0) = \phi(z)$ holds, where ϕ is the pion distribution amplitude (DA)

Above relations and bounds impose severe constraints on the form of the $\ensuremath{\mathsf{GPDs}}$

All are satisfied in our quark-model calculation

イロン イボン イヨン イヨン

Properties of GPDs Quark-model evaluation

QM evaluation of the GPDs

Large- N_c = one loop (c) k+q k $k^+=xp^+$

Direct (a), crossed (b), and contact (c) contribution (*D*-term) to the GPD of the pion (wavy line: γ^+)

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

PDF, QM

With $\zeta=t=0,$ the GPD becomes the PDF. The Nambu–Jona-Lasinio model (Davidson, Arriola, 1995) gives

q(x) = 1

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

PDF, QM

With $\zeta=t=0,$ the GPD becomes the PDF. The Nambu–Jona-Lasinio model (Davidson, Arriola, 1995) gives

q(x) = 1

LO DGLAP QCD evolution (good at intermediate x) of the non-singlet part to growing scales

PDF, QM vs. E615

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

LO DGLAP QCD evolution of the non-singlet part to the scale $Q^2 = (4 \text{ GeV})^2$ of the E615 Fermilab experiment:

PDF, E615 **The quark-model scale** PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

The quark-model scale Q_0

Various ways to fix: PDF, DA, moments

From experiment, the momentum fraction carried by the valence quarks is [SMRS 1992, GRS 1999]

$$\langle x \rangle_v = 0.47(2)$$
 at $Q^2 = 4 \,\,{\rm GeV}^2$

QM scale = no gluons, may evolve backwards until $\langle x\rangle_v=1$ \rightarrow quark-model scale for NJL

$$Q_0 = 313^{+20}_{-10} \text{ MeV}$$

(here for the so called local model, for other QM Q_0 may vary) At this scale $\alpha(Q_0^2)/(2\pi)=0.34$, which makes the evolution very fast for the scales close to the initial value – calls for improvement!

PDF, E615 The quark-model scale **PDF, lattice** Pion distribution amplitude Pion transition form factor GPD in QM

PDF, QM vs. lattice

points: transverse lattice [Dalley, van de Sande, 2003] yellow: QM evolved to 0.35 GeV pink: QM evolved to 0.5 GeV dashed: GRS parameterization at 0.5 GeV

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PDF, E615 The quark-model scale PDF, lattice **Pion distribution amplitude** Pion transition form factor GPD in QM

Pion Distribution Amplitude

Definition (for π^+ , leading twist):

$$\begin{aligned} |\overline{d}(z)\gamma_{\mu}\gamma_{5}u(-z)|\pi^{+}(q)\rangle &=\\ i\sqrt{2}f_{\pi}(q^{2})q_{\mu}\int_{0}^{1}dx e^{i(2x-1)q\cdot z}\phi(x)\end{aligned}$$

Normalization $\int_0^1 dx \phi(x) = 1$, since $\langle 0|A_{\mu}^-(0)|\pi^+(q)\rangle = if_{\pi}(q^2)q_{\mu}$ PDA is also relevant for the $\pi^0 \gamma \gamma^*$ transition form factor measured by CLEO and CELLO Similar studies in [Praszałowicz, Rostworowski, 2003]

PDF, E615 The quark-model scale PDF, lattice **Pion distribution amplitude** Pion transition form factor GPD in QM

PDA, QM vs. E791 and lattice data

PDF, E615 The quark-model scale PDF, lattice **Pion distribution amplitude** Pion transition form factor GPD in QM

PDA, QM vs. E791 and lattice data

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude **Pion transition form factor** GPD in QM

Pion transition form factor

$$\Gamma^{\mu\nu}_{\pi^0\gamma\gamma}(p,q_1,q_2) = \epsilon_{\mu\nu\alpha\beta}q_1^{\alpha}p^{\beta}F_{\pi\gamma\gamma}(p,q_1,q_2)$$
$$A = \frac{q_1^2 - q_2^2}{q_1^2 + q_2^2}, \qquad -1 \le A \le 1 \quad Q^2 = -(q_1^2 + q_2^2)$$

Brodsky-Lepage:

$$F_{\gamma^*\gamma^*\pi}(Q^2, A) = J^{(2)}(A)\frac{1}{Q^2} + J^{(4)}(A)\frac{1}{Q^4} + \dots$$

$$J^{(2)}(A) = \frac{4f_{\pi}}{N_c} \int_0^1 dx \frac{\varphi_{\pi}^{(2)}(x)}{1 - (2x - 1)^2 A^2}$$

$$J^{(4)}(A) = \frac{8f_{\pi} \Delta^2}{N_c} \int_0^1 dx \frac{\varphi_{\pi}^{(4)}(x) [1 + (2x - 1)^2 A^2]}{[1 - (2x_{\Box} - 1)_c^2 A^2_{+}]_{\Xi^{-1}}^2}$$

WB

Gravitational form factor

PDF. E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

New BaBar data

Gravitational form factor

< ≣ >

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude **Pion transition form factor** GPD in QM

< Ξ

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

GPD in chiral quark models

Analytic formulas derived, **no factorization of the** *t***-dependence** - sheds light on possible parameterizations. Building block of the GPD in Spectral Quark Model (SQM):

$$J_{\text{SQM}}(x,\zeta;t) = (\theta[x(\zeta-x)]\chi_1 + \theta[(1-x)(x-\zeta)]\chi_2)$$

$$\begin{split} \chi_2 &= \frac{2(x-1)\left[3(\zeta-1)M_V^2 + t(x-1)^2\right]}{\left[(\zeta-1)M_V^2 + t(x-1)^2\right]^2},\\ \chi_1 &= \frac{\left(x(\zeta-2) + \zeta\right)\left(3M_V^2(\zeta-1)\zeta^2 + t\left(\left(\zeta^2 + 8\zeta - 8\right)x^2 + 2(4-5\zeta)\zeta x + \zeta^2\right)\right)\right)}{\left(((\zeta-1)M_V^2 + t(x-1)^2\right)^2\left(\zeta^2 + \frac{4tx(x-\zeta)}{M_V^2}\right)^{3/2}} \\ &+ \frac{1}{2}\chi_2 \end{split}$$

 M_v – mass of the ρ meson

PDF, E615 The quark-model scale PDF, lattice Pion distribution amplitude Pion transition form factor GPD in QM

Similar studies in [Praszałowicz, Rostworowski, 2003] in a non-local model

Next slide:

LO DGLAP-ERBL evolution for SQM with $\xi = 1/3$. Solid - initial condition, dashed - evolved to $Q^2 = (4 \text{GeV})^2$, dotted - asymptotic form. Code: [Golec-Biernat, Martin, 1999]

(日) (同) (日) (日)

Form factors from the full-QCD lattice Higher-order form factors Things not covered

Gravitational form factors

Electromagnetic current: $J^{\mu}_V = \sum_{q=u,d,\dots} \bar{q}(x) \tfrac{\tau_a}{2} \gamma^{\mu} q(x)$

Energy-momentum tensor: $\Theta^{\mu\nu} = \sum_{q=u,d,\dots} \bar{q}(x) \frac{i}{2} \left(\gamma^{\mu} \partial^{\nu} + \gamma^{\nu} \partial^{\mu} \right) q(x) + \text{gluons}$

Two structures (form factors):

$$\langle \pi^{b}(p') \mid \Theta^{\mu\nu}(0) \mid \pi^{a}(p) \rangle = \frac{1}{2} \delta^{ab} \left[(g^{\mu\nu}q^{2} - q^{\mu}q^{\nu})\Theta_{1}(q^{2}) + 4P^{\mu}P^{\nu}\Theta_{2}(q^{2}) \right]$$

traceless tensor – Θ_1 and scalar – Θ_2 Lattice, exclusive processes

Form factors from the full-QCD lattice Higher-order form factors Things not covered

Full-QCD Euclidean lattice results

The EM FF (left) and the quark part of the gravitational form factor Θ_1 (right) in SQM (solid line) and NJL (dashed line), compared to data from [Brömmel et al., 2005-7]

Quark-model relation: $\langle r^2 \rangle_\Theta = \frac{1}{2} \langle r^2 \rangle_V$

Matter more concentrated than charge!

Form factors from the full-QCD lattice Higher-order form factors Things not covered

Higher-order form factors - predictions

The quark GFFs $A_{3,2i}$ and $A_{4,2i}$ at the quark-model scale $Q_0 \sim 320 \text{ MeV}$ (a) and at the lattice scale Q = 2 GeV (b)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Form factors from the full-QCD lattice Higher-order form factors Things not covered

Quark moments at $t = \xi = 0$

With the notation $\langle x^n\rangle=A_{n+1,0}(0),$ one finds at the lattice scale of $Q=2~{\rm GeV}$ [Brömmel et al., 2007]

$$\begin{aligned} \langle x \rangle &= 0.271 \pm 0.016 \\ \langle x^2 \rangle &= 0.128 \pm 0.018 \\ \langle x^3 \rangle &= 0.074 \pm 0.027 \\ \end{aligned}$$
 (lattice)

while in QM after the LO DGLAP evolution to the lattice scale

$$\langle x \rangle = 0.28 \pm 0.02$$

 $\langle x^2 \rangle = 0.10 \pm 0.02$
 $\langle x^3 \rangle = 0.06 \pm 0.01$
(chiral quark models)

Agreement within uncertainties

(日) (同) (三) (三)

Form factors from the full-QCD lattice Higher-order form factors Things not covered

Other quantities

- Photon DAs (with A. E. Dorokhov)
- Transition Distribution Amplitudes (TDA) [Pire, Szymanowski, 2005] (as the GPD, but between the π and γ states)
- *b*-representation of GPDs and transverse lattices

(日) (同) (日) (日)

- Link between high- and low-energy analyses: quark models provide initial conditions for the QCD evolution
- Analytic formulas useful for general properties, (*e.g.*, no factorization of the *t*-dependence
- \bigcirc Q_0 low, as follows form the momentum sum rule
- With LO DGLAP-ERBL evolution the agreement with the data and lattices very reasonable (PDF, DA, GFFs, GPD, photon DA, TDA)
- The pion transition form factor in qualitative agreement with the new BaBar data
- The pion gravitational form factor agrees with the lattice data, the mean squared EM radius is twice the gravitational one
- Predictions can be further tested with future lattice simulations for higher-order form factors
- GPDs of the nucleon see the talk by Wakamatsu: more challenging (Bochum, Tübingen soliton) but data exist