

Al in nuclear and particle physics

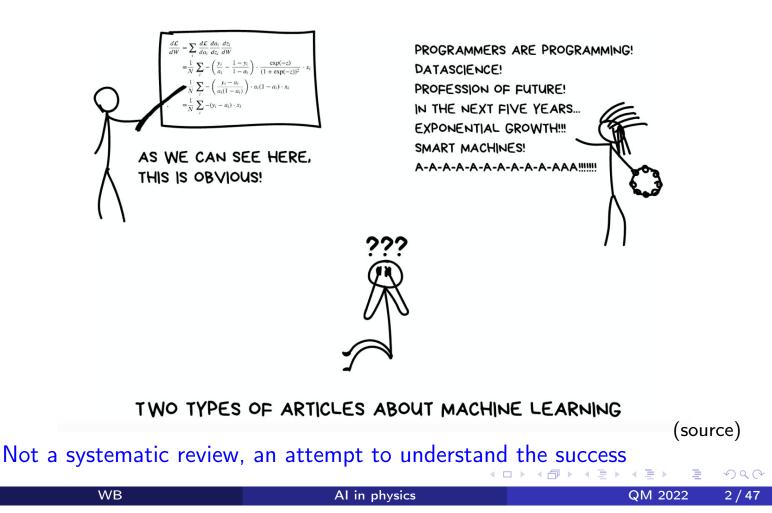
Wojciech Broniowski

Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce, Poland

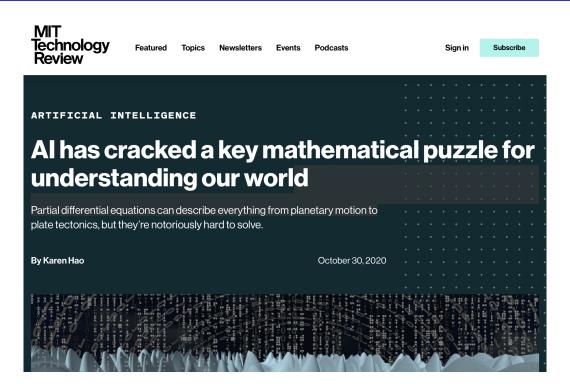
Student lecture, Quark Matter 2022, Cracow 4 April 2022

		□ ► ◀ @ ►	< ≣ >	∢ ≣ ▶	1	うくで
WB	AI in physics			QM 202	2	1/47

This lecture



Example of bombarding news...

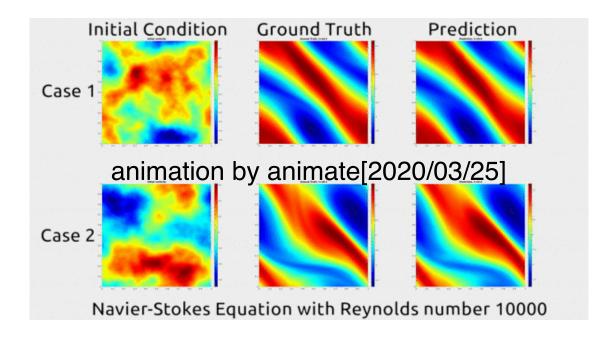


https://arxiv.org/pdf/2010.08895.pdf

https://www.technologyreview.com/2020/10/30/1011435/ai-fourier-neural-network-cracks-navier-stokes-and-partial-differential-equations/

	< ۵	 ₹ E > E 	うくで
WB	AI in physics	QM 2022	3 / 47

Example of bombarding news...

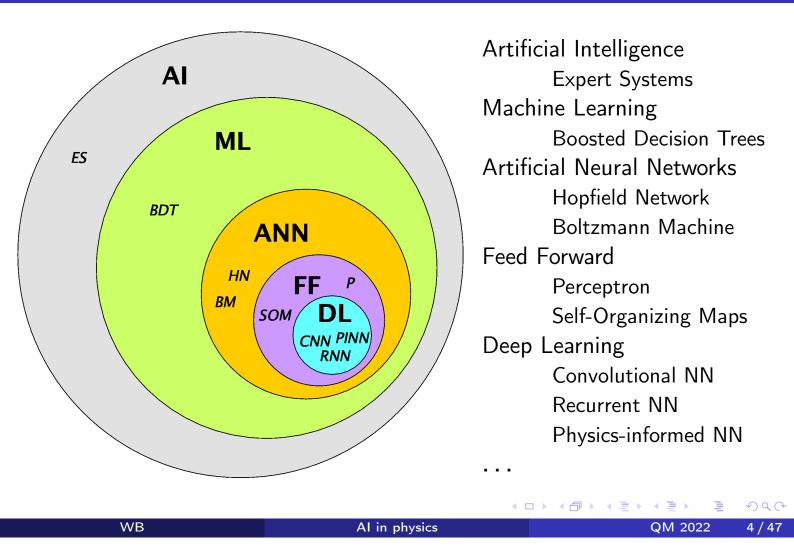


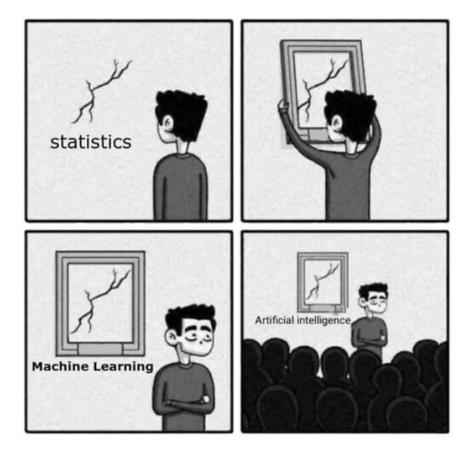
https://arxiv.org/pdf/2010.08895.pdf

https://www.technologyreview.com/2020/10/30/1011435/ai-fourier-neural-network-cracks-navier-stokes-and-partial-differential-equations/

	< د	그 에 너희 에 너희 에 나타 이 것을 하는 것을 수 있다.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
WB	AI in physics	QM 2022	3 / 47

"Classification"





(source)

	< [< ≣ >	<	₹.	$\mathcal{O}\mathcal{A}\mathcal{O}$
WB	AI in physics		QM 2022		5 / 47

Outline

	Revo	lution \sim 2010:		
 Physics questions Mini-review of ANN Classification and regres Deep NN 	ssion	Abundance of data Huge computational Novel NN architectur algorithms	es and literature ∨	ti neur
Physics-informed NN			Litera	ature
• Outreach		Date of paper	2,75	58 results
Understanding the black box			nu Tia Pu	new me Iclear m Inliang Zh Iblished in DOI
WB	AI in physics		QM 2022	6 / 47

ML in nuclear/particle physics

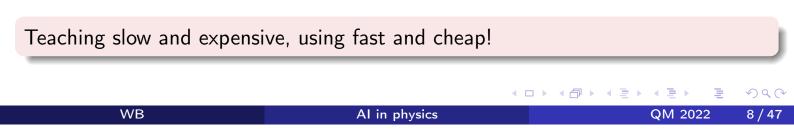
	1 >	□▶ ◀♬▶ ◀≧▶	· < ≣ > _ ≣	~ ~ ~
WB	AI in physics		QM 2022	7 / 47

Basic tasks

Reviews: https://arxiv.org/abs/2112.02309 https://doi.org/10.1140/epja/s10050-020-00290-x

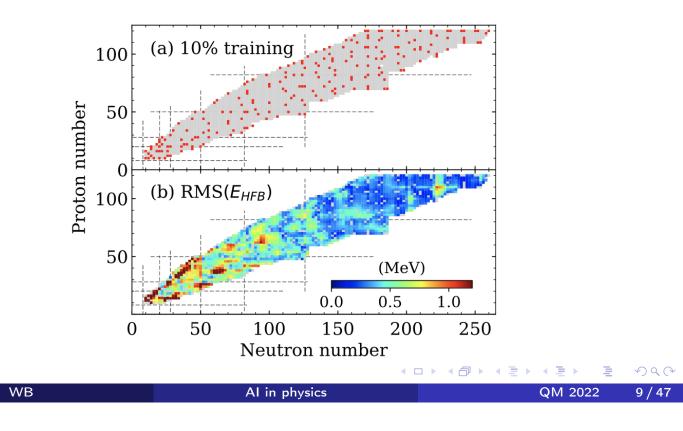
- Classification (data analysis, event identification, triggering, jets, dedicated searches, ...)
- Regression (efficient fitting of models, solving differential equations (!), inverse problems, ...)
- Clusterization (data analysis, efficient representation of data, ...)
- Generation (simulating events, data augmentation, detector physics, ...)

• ...



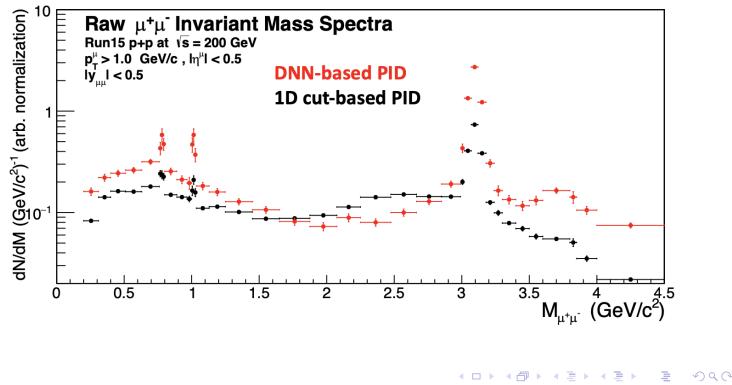
Example 1: Nuclear structure (Hatree-Fock-Bogolyubov)

https://doi.org/10.1103/PhysRevLett.124.162502: "deep neural networks is capable of predicting the ground-state and excited energies of more than 1800 atomic nuclei with an accuracy akin to the one achieved by state-of-the-art nuclear energy density functionals and with significantly less computational cost"



Example 2: Muon identification at STAR

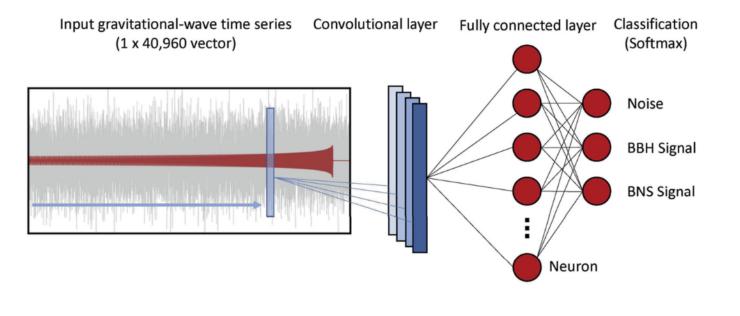
Muon identification with deep NN with the STAR muon telescope detector QM2019: 10.1016/j.nuclphysa.2018.10.036



WB	AI in physics	QM 2022	10 / 47

Example 3: Gravitational waves from binary merger

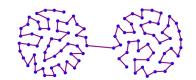
https://doi.org/10.1016/j.physletb.2020.135330



	1 >	□▶ ◀ @ ▶ ◀ ≣	▶ ∢≣ ▶	₹ ୬ ۹ ୧
WB	AI in physics		QM 2022	11 / 47

Mini-review of ANN

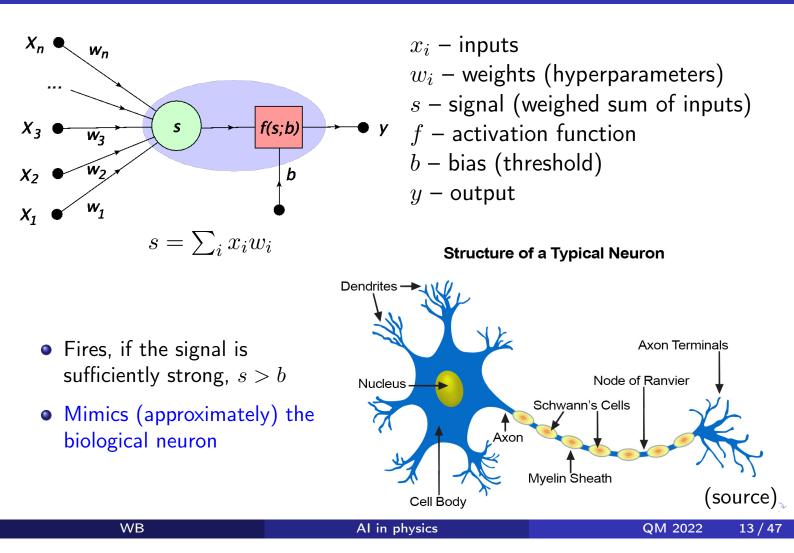
Simplest Pythonic introduction ever!



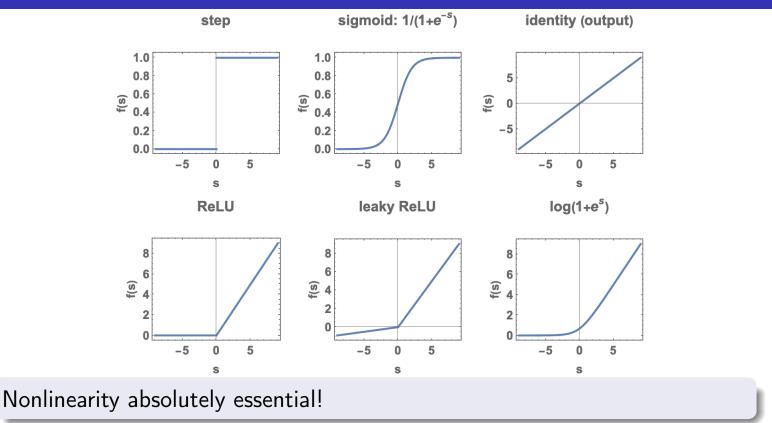
Executable Jupyter Book

	₹ ۱	그 > 《畵 > 《코 > 《코 > 《	き う 々 で
WB	AI in physics	QM 2022	12/47

McCulloch-Pitts neuron (MCP), 1943



Activation functions

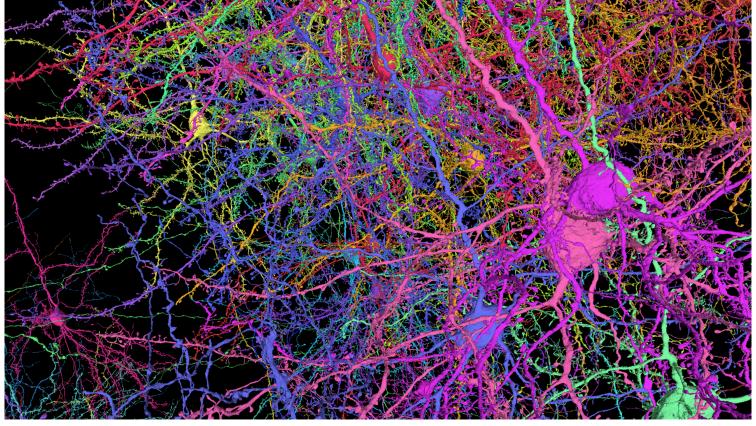


Without nonlinearity just matrix multiplication! Nonlinearity \rightarrow dissipative characteristics, attractor-based dynamics, allows NN to better catch non-trivial correlations • • • • • • • • • ≣ ► < ≣ ► 590 • WB

AI	in	physics	
----	----	---------	--

QM 2022 14 / 47

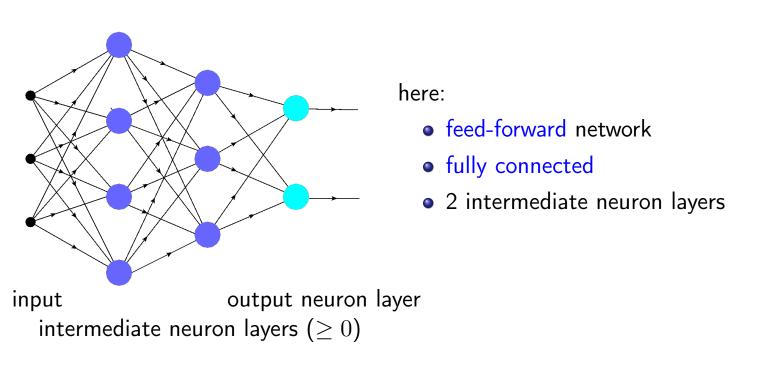
$1 \mathrm{mm}^3$ of the mouse brain



(MICrONS)

WB	AI in physics	QM 2022	15 / 47

Artificial neural network (ANN)



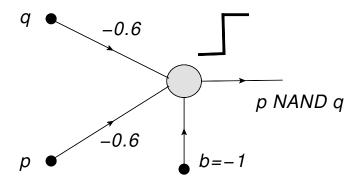
• Edges carry weights w_{ij} (many hyperparameters)

	< د	□▶ ∢@▶ ∢≣⊁ ∢≣▶	E 990
WB	AI in physics	QM 2022	16 / 47

Logical networks

With proper selection of weights, the MCP neuron becomes a logical gate

p,q=0,1

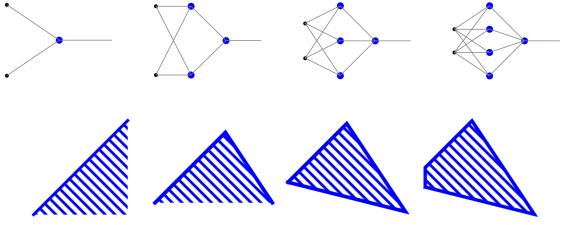


- Completeness of NAND (or NOR) gates: any logical network (boolean function) can be constructed as a feed-forward (multilayer) ANN
- → Completeness of ANN in the Church-Turing sense: any computation possible
- Fuzzy logic with smooth step functions

	1.▶		- DQC
WB	AI in physics	QM 2022	17 / 47

Inequality conditions from MCP neurons

Example in 2 dimensions: (Binary classifier) $x_1w_1 + x_2w_2 > b$ – half-plane condition (in more dim. hyper half-space) linearly separable sets first neuron layer – half-plane conditions, second (output) – multiple conjunction



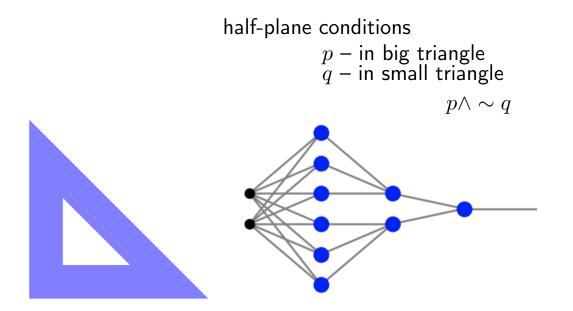
Any convex polytope region can be classified with a 2-neuron layer ANN

WB

AI in physics

QM 2022 18 / 4

More layers



Any polytope region in any number of dimensions can be classified with an at least 3-neuron layer ANN. The number of needed neurons reflects the complexity of the region

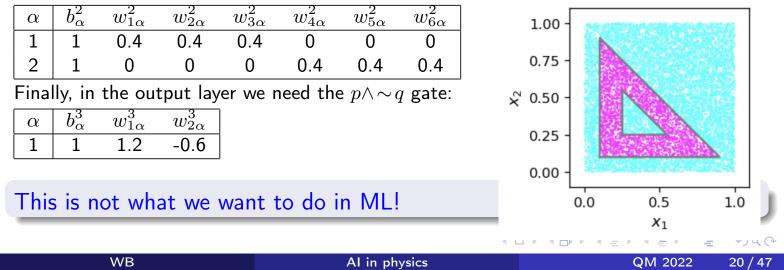
	< [□▶ ◀♬▶ ◀≧▶	< ≣ > _ ≣	9
WB	AI in physics	Q	M 2022	19 / 47

Setting hyperparameters by hand

In our example one can easily (from geometry) infer the weights and biases a priori. The geometric conditions \rightarrow the first neuron layer:

α	inequality condition	b^1_{lpha}	w_{1lpha}^1	$w_{2\alpha}^1$	
1	$x_1 > 0.1$	0.1	1	0	
2	$x_2 > 0.1$	0.1	0	1	big triangle
3	$x_1 + x_2 < 1$	-1	-1	-1	
4	$x_1 > 0.25$	0.25	1	0	
5	$x_2 > 0.25$	0.25	0	1	small triangle
6	$x_1 + x_2 < 0.8$	-0.8	-1	-1	

Conjunctions in the second neuron layer:



Concept of learning

Learning

A suitable algorithm sets the hyperparameters based on the data alone, "automatically", without a direct programers interference!

- Supervised learning: Data points have features and labels
 Example: features – coordinates, labels – belongs to an area, i.e., has a property (1) or not (0)
 Training and test data samples, loss function
- Unsupervised learning: No labels, looking for correlations/clusterization in the data
- Semi-supervised, online, ...
- Reinforcement learning (not covered): Agent actions to maximize reward, interaction with the environment (robotics)

AI in physics

2022 21 / 47

Back-propagation [Bryson, Ho, 1969]

Goal: minimize the loss function between (feed-forward) NN answers and labels Notation: $x_0^j = 1$, $w_{0m}^j = -b_m^j$, $p \in$ training sample

$$E(\{w\}) = \sum_{p} \sum_{\alpha_{l}=1}^{n_{l}} \left[y_{o,\alpha_{l}}(\{w\}) - y_{t,\alpha_{l}} \right]^{2} = \sum_{p} \sum_{\alpha_{l}=1}^{n_{l}} \left[f\left(\sum_{\alpha_{l}=1}^{n_{l}-1} f\left(\dots f\left(\sum_{\alpha_{0}=0}^{n_{0}} x_{\alpha_{0}}^{0} w_{\alpha_{0}\alpha_{1}}^{1} \right) w_{\alpha_{1}\alpha_{2}}^{2} + x_{0}^{1} w_{0\alpha_{2}}^{2} \dots \right) w_{\alpha_{l}-1}^{l} + x_{0}^{l-1} w_{0\alpha_{l}}^{l} \right] - y_{t,\alpha_{l}} \right]^{2}$$

Chain rule, steepest gradient (differentiability of $f) \rightarrow$

Backprop

$$D_{\alpha_{l}}^{l} = 2(y_{o,\alpha_{l}} - y_{t,\alpha_{l}}) f'(s_{\alpha_{l}}^{l})$$

$$D_{\alpha_{j}}^{j} = \sum_{\alpha_{j+1}} D_{\alpha_{j+1}}^{j+1} w_{\alpha_{j}\alpha_{j+1}}^{j+1} f'(s_{\alpha_{j}}^{j}), \quad j = l-1, l-2, \dots, 1$$

$$w_{\alpha_{j-1}\alpha_{j}}^{j} \rightarrow w_{\alpha_{j-1}\alpha_{j}}^{j} - \varepsilon x_{\alpha_{j-1}}^{j-1} D_{\alpha_{j}}^{j} \qquad \text{(recursion goes backwards)}$$

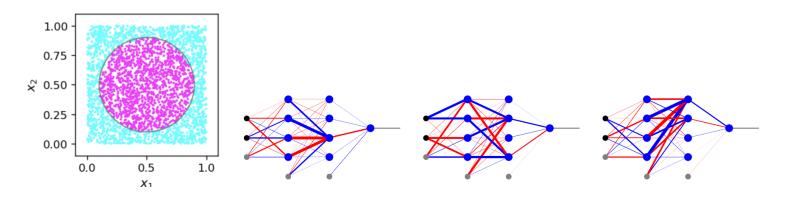
$$B \qquad \text{Al in physics} \qquad \text{QM 2022} \qquad 22/47$$

WB

Example, local minima

- Methodology: the program "writes itself" by finding the parameters via minimization of the loss function
- Black box different paradigm, works, many local minima are fine!

Example:

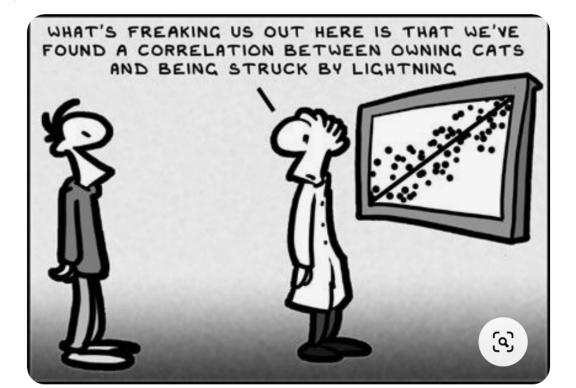


ANN does not have any idea about geometry!

	Learn on mistakes!			
		< □ > < @ > < ≧ >	★ ≣ > = ≣	৩৫৫
WB	AI in physics		QM 2022	23 / 47

Regression

	. •	≣⊁ ⊀≣⊁	5 9 9 C
WB	AI in physics	QM 2022	24 / 47

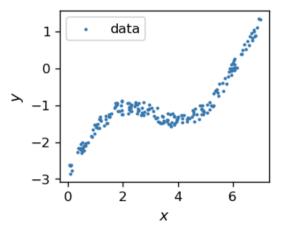


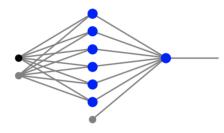
(source)

 MB
 Al in physics
 QM 2022
 25 / 47

Regression

We want to represent (interpolate) some noisy experimental data





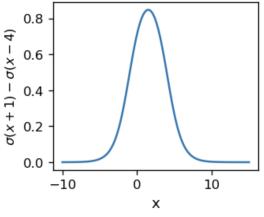
Instead of using a specific function (e.g. polynomial) we use ANN. The intermediate layer has sigmoid activation functions, but the last layer has an identity activation to cover the values range

 \boldsymbol{x} - feature, \boldsymbol{y} - label

	< د	□▶ ◀@▶ ◀≧▶ ◀≧▶	E nac
WB	AI in physics	QM 2022	26 / 47

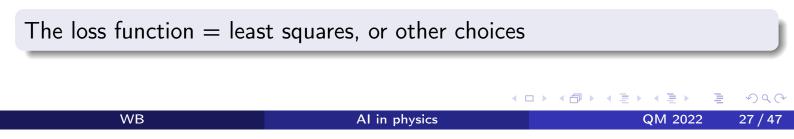
Sigmoid basis

To see that a basis of sigmoid can be used to represent a function, consider a difference of two sigmoids with different thresholds:

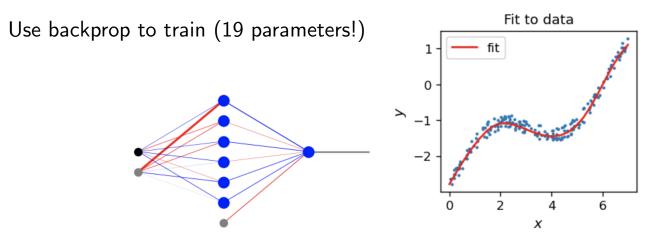


We can "fill" any function with such bell-shaped functions, or more generally with (sufficiently many) sigmoids

The first neuron layer forms the basis, the second provides "amplitudes"



Training regression



- $\Delta E_{test} \ge \Delta E_{train}$, possible overfitting problem (regularization), optimum number of neurons
- Adaptiveness

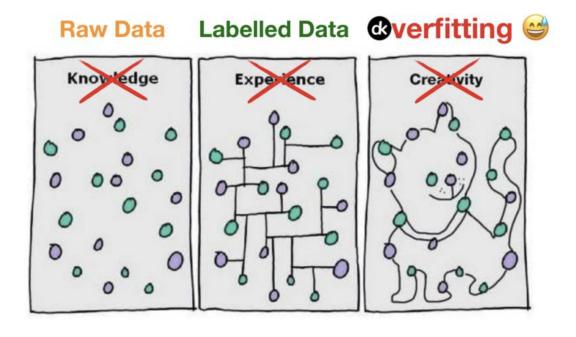
To interpolate in 2 or more dim. one needs ANNs with at least 3 neuron layers

A pair of neurons in the first neuron layer can form a hump in x_1 , another pair – in x_2 , and so on for the remaining x_i . Conjunction of these humps in the second neuron layer yields a "basis" function focused in a region around a certain point in the *n*-dimensional input space. The last layer provides amplitudes. [cf. Müller, Reinhardt, Strickland]

WB

Al in physics

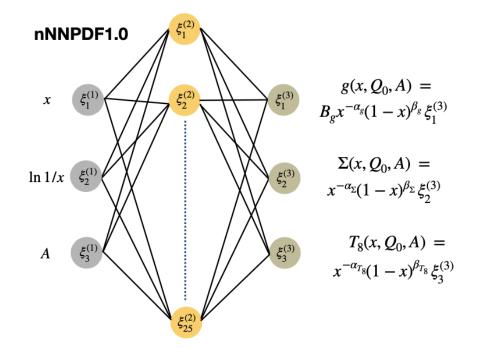
QM 2022 28 / 4



(source)

	1 >	□▶ ∢@▶ ∢≣▶ ∢≣▶	E
WB	AI in physics	QM 2022	29 / 47

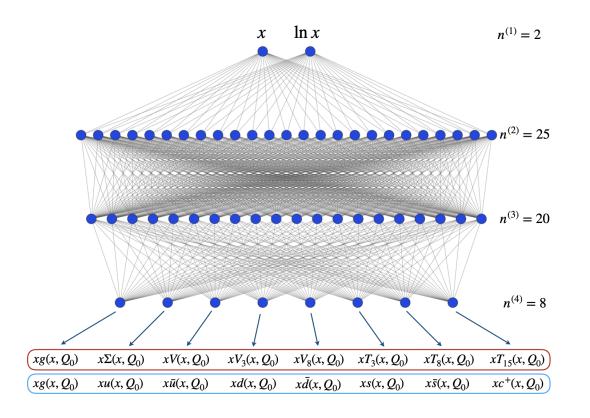
Example: NNPDF



[NNPDF Collaboration, Eur. Phys. J. C (2019) 79:471]

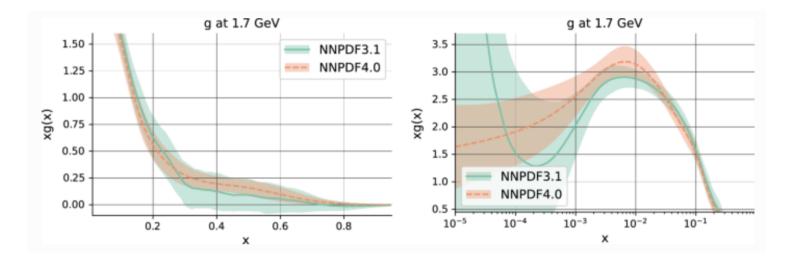
	₹ (E 900
WB	AI in physics	QM 2022	30 / 47

NNPDF 4



		[arXiv:2109.02653		
		(□) < @) < ≥) < ≥) =	うみで	
WB	AI in physics	QM 2022	31 / 47	

Sample result: glue from NNPDF



https://doi.org/10.1140/epjc/s10052-021-09863-6

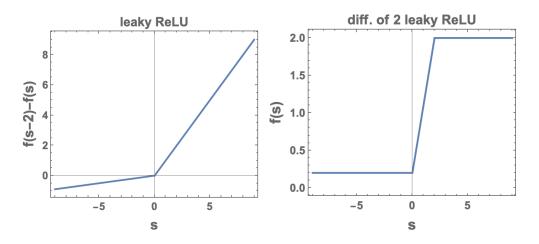
	1.▶	□▶ ◀@▶ ◀≧▶ ◀≧▶	E
WB	AI in physics	QM 2022	32 / 47

Going deep

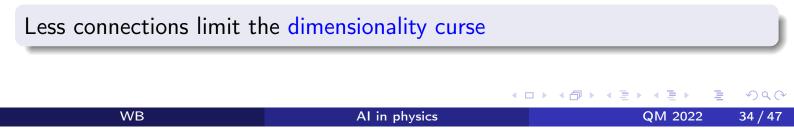
	. ■	□▶ ∢⊡▶ ∢≣▶ ∢≣▶	E
WB	AI in physics	QM 2022	33 / 47

Better activation functions, limited connections

Rectification: ReLU, leaky ReLU ... – also form a basis

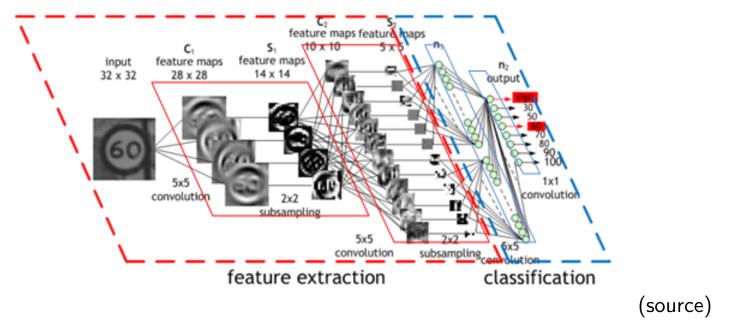


Especially needed for deep ANN – no dead neuron problem



Convolutional NN (CNN)

Limited (local) connectiveness (as in our biological vision system), action of various filters producing feature maps, run on GPU



Composing ANNs as "Lego blocks", backprop, partially-trained networks Local features are extracted and correlated, longer and longer range

WB	AI in physics	QM 2022	35 / 47

(ロト (四) (三) (三)

Ъ.

SQ (~

CNN for gravitational waves classifier from intro

Table 1

Architecture of the deep neural network. The architecture of the deep onedimensional convolutional network consist of input layer, followed by 19 hidden layers, and output *softmax* layer. The size of the network is about 83 MB.

	Layer	Array Type	Size
	Input	Vector	40960
1	Reshape	Matrix	1 imes 40960
2	Convolution (1D)	Matrix	32 imes 40945
3	Pooling	Matrix	32 imes 10236
4	ReLU	Matrix	32 imes 10236
5	Convolution (1D)	Matrix	64 imes 10229
6	Pooling	Matrix	64 imes 2557
7	ReLU	Matrix	64 imes 2557
8	Convolution (1D)	Matrix	128×2550
9	Pooling	Matrix	128×637
10	ReLU	Matrix	128×637
11	Convolution (1D)	Matrix	256×623
12	Pooling	Matrix	256×155
13	ReLU	Matrix	256×155
14	Flatten	Vector	39680
15	Dense Layer	Vector	128
16	ReLU	Vector	128
17	Dense Layer	Vector	64
18	ReLU	Vector	64
19	Dense Layer	Vector	3
	Output (Softmax)	Vector	3

(taught on 100000 augmented data)

WB	AI in physics	QM 2022	36 / 47

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

590

Modern ML

Some thoughts from a review by Matthiew D. Schwartz (Harvard) https://arxiv.org/abs/2103.12226

The modern approach is to feed raw, minimally-processed data, rather than high-level physically-motivated variables, into a deep neural network. The network is then free to find what it thinks is most valuable in the data

In the past, physicists ... would devote their efforts to understanding signatures of particular particles or processes from first-principles: why should a stream of pions coming from a W boson decay look different than a stream coming from an energetic gluon? Now we simply simulate the events, and let neural network learn to tell the two samples apart. Even a relatively simple dense network with 10 lines of python code can blow the traditional discriminants out of the water. Progress ... has come from taking algorithms masterly engineered for other applications, like convolutional neural networks, and shoehorning the collider data into a format that these algorithms can process. Unfortunately doing so can inhibit the extraction of any kind of physical understanding from the network itself

While it is easy to train an algorithm to reproduce the majority of a model's output, it is much harder to train it to reproduce every nuance of the model

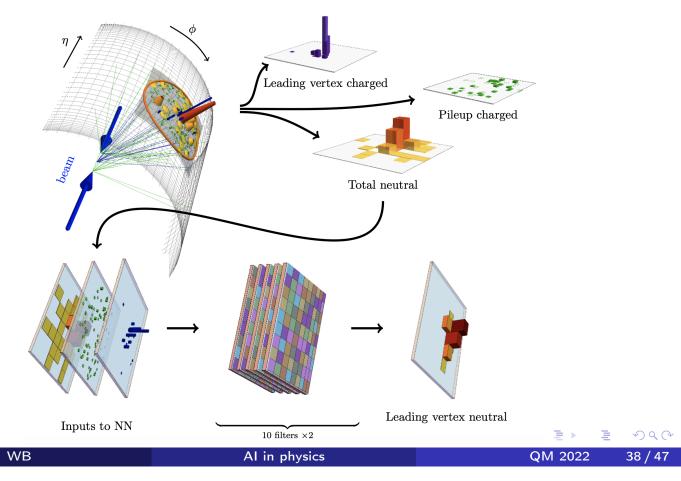
WB

AI in physics

QM 2022 37 / 47

Example: pile-up mitigation

Pile-up mitigation with machine learning (PUMML) at the LHC (Pythia) https://doi.org/10.1007/JHEP12(2017)051



Other developments

	. ■	□▶ ∢@▶ ∢≧▶ ∢≧▶	E
WB	AI in physics	QM 2022	39 / 47

Detector simulation with Generative Adversarial NN (GAN)

GAN uses one NN to generate (noisy) data samples, and a second *adversary* NN (trained on a training sample) to assess if the generated data are OK

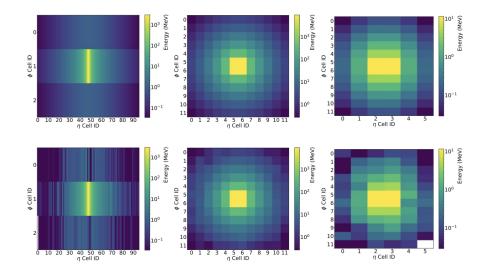
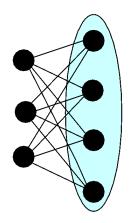


FIG. 6. Average e^+ GEANT4 shower (top), and average e^+ CALOGAN shower (bottom), with progressive calorimeter depth (left to right).

Orders of magnitude faster	r! 10.	10.1103/PhysRevD.97.014021		
WB	AI in physics	QM 2022 40 / 47		

Other architectures

- Recurrent NN (RNN) long chains of data (jet classification)
- Auto-encoders (simulating data)
- Hopfield, Boltzmann, Helmholtz networks, restricted Boltzmann machine



RBM: visible nodes – two-way communication – hidden nodes memory

	4	□▶∢@⊁∢≧⊁∢≧⊁ ≧	うくで
WB	AI in physics	QM 2022	41 / 47

Physics-informed NN (PINN)

Include physics information in the architecture and/or loss function (symmetries, constraints, physics laws)

 \rightarrow learn (partial) differential equations with boundary/initial conditions

WB

AI in physics

QM 2022 42 / 47

DeepXDE

Lu, Meng, Mao, Karniadakis https://epubs.siam.org/doi/pdf/10.1137/19M1274067 Karniadakis et al. https://www.nature.com/articles/s42254-021-00314-5

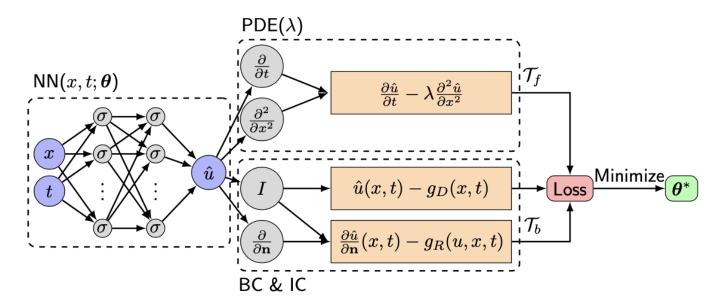


FIG. 1. Schematic of a PINN for solving the diffusion equation $\frac{\partial u}{\partial t} = \lambda \frac{\partial^2 u}{\partial x^2}$ with mixed boundary conditions (BC) $u(x,t) = g_D(x,t)$ on $\Gamma_D \subset \partial\Omega$ and $\frac{\partial u}{\partial \mathbf{n}}(x,t) = g_R(u,x,t)$ on $\Gamma_R \subset \partial\Omega$. The initial condition (IC) is treated as a special type of boundary conditions. \mathcal{T}_f and \mathcal{T}_b denote the two sets of residual points for the equation and BC/IC.

	•		$\mathcal{O} \mathcal{Q} \mathcal{O}$
WB	AI in physics	QM 2022	43 / 47

DeepXDE

Lu, Meng, Mao, Karniadakis https://epubs.siam.org/doi/pdf/10.1137/19M1274067 Karniadakis et al. https://www.nature.com/articles/s42254-021-00314-5

Laplace eqn.

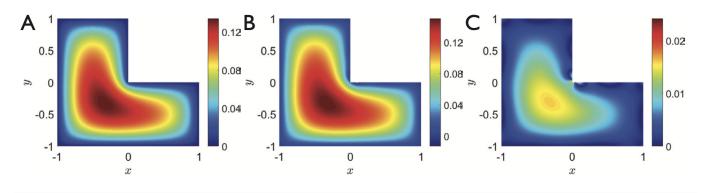


Fig. 7 Example in subsection 4.1. Comparison of the PINN solution with the solution obtained by using the spectral element method (SEM). (A) The SEM solution u_{SEM} , (B) the PINN solution u_{NN} , (C) the absolute error $|u_{SEM} - u_{NN}|$.

(SEM – conventional Spectral Element Method)

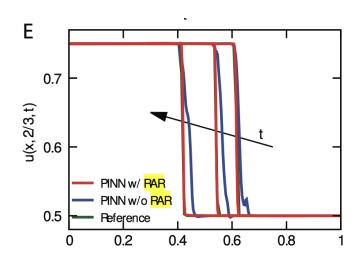
WB	AI in physics	QM 2022	43 / 47

DeepXDE

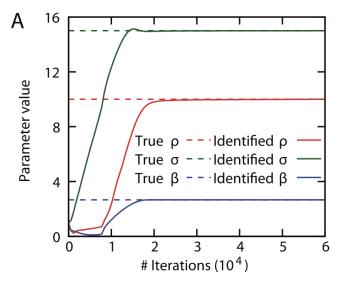
Lu, Meng, Mao, Karniadakis https://epubs.siam.org/doi/pdf/10.1137/19M1274067 Karniadakis et al. https://www.nature.com/articles/s42254-021-00314-5

Burgers eqn. (shock waves)

Inverse problem of the Lorentz system



(RAR – adaptive improvement)

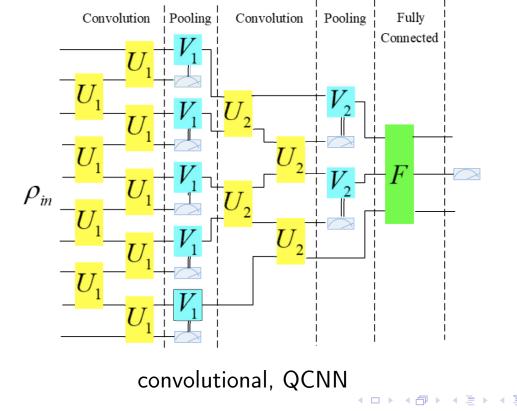


	4 Ⅰ	₹ ▶</th <th>< ₹ ></th> <th>₹ *,</th> <th>) Q (*</th>	< ₹ >	₹ *,) Q (*
WB	AI in physics	Q	M 2022	43	/ 47

Further horizon: Quantum NN

WB

(see the following lecture on Quantum technologies by Artur Ekert) Stage of building algorithms Review: https://arxiv.org/abs/2109.01840



	in	phy	181C
		pny	/ SIC

QM 2022 44 / 4

Conclusions

	1 >	□▶ ∢@▶ ∢≧▶ ∢≧▶	≣
WB	AI in physics	QM 2022	45 / 47

Status of ML in physics

- Not long ago: novelty, curiosity, fashion \rightarrow absolute standard (as Simpson's method, least squares, MC, ... before)
- In physics, ideas and methods largely transplanted from other fields
- Continuous improvements
- Active on-going development: architecture, Hopfield, Boltzmann... interesting mathematically
- Sea of practical applications, "production phase" of simple to use libraries and dedicated codes
- Libraries and platforms: PyTorch, Keras/TensorFlow (Google), fastai (DL in Python), AutoML (Google cloud), Watson (IBM), SageMaker (Amazon), ...

We need to HL (human-learn) this stuff!

 WB
 Al in physics
 QM 2022
 46 / 47

https://cerncourier.com/a/designing-an-ai-physicist

Jesse Thaler (MIT):

... We have gained trust in AI decisions through careful studies of "control regions" and painstaking numerical simulations. As our physics ambitions grow, however, we are using "deeper" networks with more layers and more complicated architectures, which are difficult to validate in the traditional way. And to mitigate 10 to 100-fold increases in computing costs, we are planning to fully integrate AI into data collection, simulation and analysis at the high-luminosity LHC ...

To build trust in AI, I believe we need to teach it to think like a physicist ...

If we don't exploit the full power of AI, we will not maximize the discovery potential of the LHC and other experiments

Thanks

WB

AI in physics

M 2022 47 /