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Outline:

e condensates and OPE e Narison-Zakharov and new leading power
corrections e Lavelle propagators e Landau-gauge condensates from lattice
measurements e interpretation and significance of the results:
gauge-independence, Gribov copies, topological structure of the vacuum
and confinement



Condensates in QCD

A correlator of two currents,

Mas(e) =i [ d'2e(0| T{Ja(z), 50} | 0

can be expanded at large Euclidean momenta with the help of the Wilson
expansion. For vector currents, JK;'EA = q(1 £ v5)%q, one gets explicitly

HV:l:A (q,uQV o g,uyq2)5abHV:|:A with

uv,ab
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qv-a _ 2me(qq) 327 as(dq)”

Q4 9 QG

(for other channels similar expressions)

Parameterization of non-perturbative physics in terms of condensates:
me(qq) = —im2f2 = —0.8 x 107*GeV*, 25(G?) = (0.317730GeV)*,
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Vast applications in hadronic physics: QCD sum rules, lattice, ...

Structures selected for condensates were dictated by gauge-invariance.
K. G. Chetyrkin, S. Narison, and V. |. Zakharov (1999) append the
standard OPE with the 1/Q? power correction, introducing a
gluon-mass-correction term. Subsequently, Narison and Zakharov (2001)
demonstrated, to a big surprise, that some lattice data are much better
reproduced with this term. Explicitly,

1 OAS )\2 <%G2>
mv+4 — <1 ) log (Q? n
V-4 _ 2me(qe) 327 as(de)”
04 9 Qb
In coordinate space this leads to quadratic terms
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Narison and Zakharov
Phys. Lett. B 522 (2001)266

Fit: 2502 = —0.12GeV?

“Comparison of the lattice data with the OPE predictions for two Sets of QCD
condensate values. The dot-dashed curve is the prediction for SET 3 where the
contribution of the x*-term has been added to SET 2. The bold dashed curve is SET 3 +
a fitted value of the D = 8 condensate contributions. The diamond curve is the

prediction from the instanton liquid model of Shuryak.”
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Far reaching consequences:

e Standard OPE might be improved with the leading power corrections

e Interpretation via gluon mass, or, equivalently, via the gluon condensate
(Af AH) (comes next)

e This apparently gauge-dependent condensate may be written in terms
of a gauge-independent expression! (last part of the talk)

. now we go on the lattice!
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Quark propagator from the lattice

Z(p)
S(p) = =2 Landau gauge 0- A =0
¢ _
L h Vo ar?dpr(Gq) ullog(Q? /Agep) ™M~
4 T 2 2 /A2 d

__oar g ks ‘igh 3Q*(log(u /AQCD)] M
% y g ‘. ] !‘!E L™ s,”“mﬁ ) ) ) p

. = 2. L. 3 ’
O, t %; S T abb 1 T m(p”)[log(u /AQCD)] M
2 3 -+ = L4

log(Q2/Afycp)]™M

dy = 12/(33 — 2Ny)
N;=0,p=0

O.‘5 1‘ 1.‘5 2 2.‘5 3§§§§§i§§ 4
g!@gﬁl!i!!?y Various sets of points correspond to
s pbf m. = 29, 42, 54, 80, 105, 150, 225, and 295 MeV,

]
N g §§ indicated by horizontal lines in the top panel

0.9 r

$

0.8 %;
i Lattice: “Asqtad” improved staggered action,
" t gauge ensemble made of 100 quenched, 16° x 32 lattices
with a nominal lattice spacing of a = 0.124 fm
set from the static quark potential
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Lavelle propagator

Lavelle and Schaden (1988) and Lavelle and Oleszczuk (1992) worked out
the quark propagator in presence of condensates in the general covariant
gauge. In the Landau gauge 0 - A% = 0 this propagator yields

B T { A” ro(G? 3mas{qgs
AQ=27@ - 14T T S i td

C2 Cq4

Q2—|—Q4—|—...

= 14+

. now we have the lattice data to compare to!
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Matching to lattice

[Ruiz Arriola, Bowman, WB, PRD 70 (2004) 097505]

0.5 1 1.5 2 2.5 3 3.5 0.3 0.325 0.35 0.375 0.4 0.425 0.45

Q [GeV] c, [GeV?]

The optimum values for ¢y and ¢4 yield
as(A?) = (0.36 = 0.04) GeV? or g2(A%) = (2.14+0.1 GeV)?

and
" 47r Olg

—(—2G?) = (—0.11 £ 0.03) GeV*
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Since (22G?) ~ 0.01 GeV* its contribution is negligible compared to the
mixed-condensate term. Thus

os{Ggs Ag) = (—0.11 & 0.03) GeV*

(first estimate of this quantity).

The errors are statistical. In addition, there are certain systematic errors
originating from the choice of the fitted function A(()) and from the
choice of the “fiducial” region in (). Quantities quoted in physical units
are also subject to the uncertainty in the scale that goes with quenched
lattice simulations.
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Running of (A4?)

Operators in QCD run with appropriate anomalous dimesions. For
instance, the quark condensate runs at LO as

2

(30) 0 = (as(u%)

O‘S(ﬂbz)

2

Yaq/ Bo
) (9 py» Vgq = 4, Bo = (11 — ng)

The anomalous dimension for the A% condensate has been worked out by
Gracey and Boucaud et al. with the result

OF (Nz) <A2>u ~ g (N2)1_7A2/607

where v,42 = 35/4 and By = 11 for Ny = 0, hence 1 — v,2/5y = 9/44 and
the evolution is very slow. For instance, the change of u? from 1 GeV? up
to 10 GeV? results in a reduction of as(A2) by 10% only (we use

as(p?) = 4w /(9log[p?/A?]), with A = 226 MeV for the LO evolution.)
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Gluon mass

Many estimates in the literature refer to the gluon mass (— Lavelle
propagator for the gluon)

3
2 2 2
= —g.(A

Our estimate for (A%), when evolved from 2 GeV? (assumed lattice scale)
to 10 GeV? (physical scale), yields

ma = (625 4+ 33) MeV (at 10 GeV?)

Evolution from 1 to 10 GeV? gives m = (611 4 32) MeV, while evolution
from 4 to 10 GeV? produces m 4 = (635 4= 34) MeV.
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Comparison to other approaches, compilation of Field (2002) + mine

Author Year Estimation Method Gluon Mass
Parisi, Petronzio 1980 J/¢ — X 800 MeV
Cornwall 1982 Various 500 £+ 200 MeV
Donnachie, Landshoff | 1989 Pomeron parameters 687-985 MeV
Hancock, Ross 1993 Pomeron slope 800 MeV
Nikolaev et al. 1994 Pomeron parameters 750 MeV
Spiridonov, Chetyrkin | 1988 e, (TrG: ) 750 MeV
Lavelle 1991 qq — qq, (TrG",) 640 MeV=/Q(MeV)
Kogan, Kovner 1995 | QCD vacuum energy, (TrGi,) 1.46 GeV
Field 1994 | pQCD at low scales (various) 1.57 2 GeV
Liu, Wetzel 1996 ner, (TrGs,) 570 MeV
Glue ball current, (TrGiu) 470 MeV
Ynduréin 1995 QCD potential 101920 MeV
Leinweber et al. 1999 Lattice Gauge 1.02 £+ 0.10 GeV
Field 2002 I/ — vX 0.721770 055 GeV
T — X 1.18%0 0 GeV
Celenza, Shakin 1986 Ginzburg-Landau 649 MeV
Boucaud et al. 2000 gluon propagator, lattice 710 MeV
Boucaud et al. 2000 gluon vertex, lattice 1.33 GeV
Narison, Zakharov 2001 S + P correlator, lattice 0.7-1 GeV (x1t 7)
our value 2004 quark propagator, lattice 600-650 MeV
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Gauge-independent meaning of gauge-dependent
operators

[Gubarev, Stodolsky, Zakharov, PRL 86 (2001) 2220]
Example from magnetostatics:

“... since there is a nonzero magnetic field B = V X A, we know some nonzero A must
be present; A cannot be zero everywhere. Now consider [ A%d3z. It is a positive
quantity and cannot be zero. It must then have some minimum value. Therefore of all
the possible A configurations which yield the given B the one (or the ones) with the
smallest integral of A® has in a sense an invariant significance ({ A”. }). Suppose ... that
I A2d’z is at its minimum value; then under a gauge transformation it is stationary.
Considering A — A + VYV ¢ for infinitesimal ¢ we have [ A - V¢ d*z = 0 and
integrating by parts

/ oV - A d’z + surface terms = 0.

Since ¢ is arbitrary ... the “minimum A?” condition is equivalent to the familiar gauge
conditionV - A = 07
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There is the vector relation (from (k x A)? = k*A*% — (k- A)?)

1 V X A [V x Az’ V- A V- Az’
NiPs = L apy ([LACLLY X AW V- AGIT A
47 |x — x/| |x — x/|
+ surface terms
Hence 2 1 5 3 ,B(x)- B(X,)
L= — d’xzd” x + surface terms
e 4AnV |x — x/|

Locality traded for manifest gauge invariance!

In 4 dimensions 1 (e, krA,)° = k*A* — (k- A)®, minimization equivalent to the
Landau (i.e. Lorentz) condition

A2(x)d4x _ L d4a:d4az'[FW(x)][FW(x/)] 4 1 d4xd4x/[auAu(x)][auAu(xl)]

272 (x — x')? 272 (x — x')?

+ surface terms

“.. The logical situation concerning A” . resembles somewhat that of the question of
the energy of a particle in relativity. The energy of a particle is of course a frame
dependent quantity. However the minimum energy, which is the energy in the rest frame,
has an invariant meaning, namely the mass. In going to the rest frame of the particle we
do make a certain choice of frame, but nevertheless the mass is an undeniably meaningful
quantity... "
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Non-abelian case:

2

| B )
Afnin — ﬁmmg d*x gAMgJr — g—g@ugT

Here g is the group element and g, denotes the coupling constant. The
minimization gives the function gnin(x; A). We can always compensate
the gauge transformation 4, — g’Aug’Jr + g’@ug’T With Gmin — Gming’ !

2 . . .
and AZ . remains invariant.
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Gribov copies

[Gribov (1978)]
Abelian theory - no problems, perturbation theory - no problems.

Non-abelian and non-perturbative: no local gauge fixing is free of Gribov
copies, i.e. configuration of fields from the same gauge orbit entering the

path integration.

space of all A fields

g -
Au
from
A
Lgauge A, F[A]=0 Williams,
orbit 2003

F' - complete gauge fixing
F' - incomplete gauge fixing, e.g. F'(A(z)) =0 - A(x)
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Divide the gauge-fixed space of A into regions containing n negative values
of the Fadeev-Popov operator for the Landau gauge, —0*(0,, - +[A4,, ‘])

space of A: F'(A) =0

Boundaries (where det of the FP operator vanishes) are called the Gribov horizons.
Gribov showed that neighboring regions C,, — C',,_1, ..., Cy — (7 contain copies. He
suspected that C is free of copies. However, Zwanziger (1989) showed that this
conjecture is not true.

e A =0 belongs to
e (Jy Is convex

e Every gauge orbit passes throught Cj
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[' - space of all A subject to the gauge-fixing constraint, ) = (Y, - first
Gribov region, 0€2 - first Gribov horizon, A - fundamental modular region

(FMR), dashed lines - group orbits connecting Gribov copies

00—
O\

Boundary id.
[from Stodolsky,

Singular Boundary Point r van Baa |,
Zakharov (2002)]

FMR is free of Gribov copies! Furthermore, Zwanziger showed that the
first Gribov region (2) corresponds to all mimima of A? with respect to g
(local and absolute), while FMR (A) corresponds to the absolute minima
of A?! Further Gribov regions correspond to extrema, with 1, 2, ...

negative eigenvalues.
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Significance for calculations of propagators on the lattice

Modification of the IR behavior occur when restrictions to €2 or A regions are made.

puz;u) Z(Zj), Delp) = _G(lj)
p p p

Dw(p) = <5W -

Dyson-Schwinger equations in the Landau gauge for the ghost and gluon dressing
functions, G'(p?) and Z(p?) yield simple power laws

25 ‘ ‘ ‘ —— 1 T T T -~
o N.=0, Bowman et al.
2 2\ 2 2 2\ — L e |
Z(p ) ~ (p ) Ra G(p ) ~ (p ) Rv > o NF2+1, Bowman et al.
i — DSE, N=0 il
T3 -- DSE, Ni=3 (chiral)
L5 pl --- DSE, N=2+1 (u/d,s)
. o | ’ RS |
with £ ~ 0.6. =
N 1} . 1
Ghost IR enhanced, gluon IR vanishing! 0.5 il
O L | L | L | L | L | L | L
0 1 2 3 4 5 6 7

Kugo-Ojima (1979) confinement criterion (in Landau gauge):
Ghost propagator more singular than the pole = confinement. Seen on the lattice!

Restriction to FMR is not trivial to accomplish. Silva and Oliveira (2004) showed that the
difference for the gluon propagator when restricting from €2 further to A is at the level of
a few percent at soft momenta.
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Other recent developments

e Boucaud et al. (2000), Gubarev et al. (2001) - topological structure of
the vacuum, relevance for confinement

2

“The minimal value of the potential squared, (Az . ), encodes information

on the topological defects in gauge theories”

e Kondo (2001) - gauge-covariant redefinition of the gluon field and
discovery of a BRST invariant genaralization of the A? condensate:

1 1 , -
ﬁ< d*z (EAH(;U)A“(:C) — zac(m)c(m)))
(a - gauge-fixing parameter, ¢, é- ghosts). In Landau gauge o = 0.

e Slavnov (2004) - proof of gauge invariance of the expectation value of
A? (uses non-commutative geometry)

“The gauge invariance of the condensate follows from the hidden
symmetry of Yang-Mills theory, which becomes explicit if one considers it
as a limit of the noncommutative gauge model”
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Conclusion

e One can obtain Landau-gauge condensates from the lattice propagators

o Our value of (A?) compatible with other estimates (lattice gluon
propagator, gluon mass). We find from the quark propagator

ma = 600 — 650 MeV
e First estimate of the mixed condensate (GAq)

e Saving the gauge invariance, or interpreting the apparently
gauge-variant quantity in a gauge-independent way: minimum over g,
Kondo, Slavnov

e Deeper meaning of the A% condensate: possible modification of OPE,
Gribov copies, topological structure of the vacuum and confinement,
lattice calculations, Dyson-Schwinger equations, . ..

Interesting and hot topic!
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Lattice

Asqgtad action - improved Kogut-Susskind action, with errors of the order
O(a*, a*g?), with tadpoles summed up

Enforcing Landau gauge - minimizing [ d*zTr[A9(x)AY(x)] over the
group g is equivalent to maximizing

> Re (Trlg(x)Upu(z)gt(x + )]) -

The algorithm may produce global as well as many local minima. That
way one may test the numerical significance of restricting to FMR.
Typically, it is a few percent effect for the gluon propagator in the soft
region [Silva and Oliveira, 2004].
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Fadeev-Popov quantization

[from A. G. Williams, Prog. Theor. Phys. Supp. 151 (2003) 154]

Let us denote for each gauge orbit the gauge transformation, g = Q[AO], as the
transformation which takes us from the origin of that orbit, A?L, to the corresponding
configuration on the FMR. Then

DA= DA Dg= DA™Y D(g-3).

The inverse Faddeev-Popov determinant is

—1

ALA™MY = Dy S[F[A] = Dy s(g — §)|det (Mr([Aliz,1)™)|

with Mp([A]; z,y)* = §F*([A]; ) /89" (y). We have
1 = [ Dg Ap[A] §[F[A]] = [ D(g9g — g) Ar[A] 6[F[A]] by definition and hence

DA™MR= DA™R D(g - g) Ap[A]S[F[A]]= DA Ap[A]§[F[A]]

Since for an ideal gauge-fixing there is one and only one g per gauge orbit, such that
F([A]l;x)|; = 0, then |detMr[A]| is non-zero on the FMR. It follows that since there
is at least one smooth path between any two configurations in the FMR and since the
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determinant cannot be zero on the FMR, then it cannot change sign on the FMR. The
first Gribov horizon is defined to be those configurations with det Mp[A] = 0 which lie
closest to the FMR. By definition the determinant can change sign on or outside this
horizon.

Assume that we have a family of ideal gauge fixings F'([A]; ) = f([A]; ) — c(x) for
any Lorentz scalar ¢(x) and for f([A]; x) being some Lorentz scalar function, (e.g.,
O"A, (x) or n"A,(x)). Therefore, using the fact that we remain in the FMR and can
drop the modulus on the determinant, we have

[DA™R = DA det Mp[A] §[f[A] — c]. Since ¢(x) is an arbitrary function, we
can define a new “gauge” as the Gaussian weighted average over c(x), i.e.,

1

DA™ Dc exp {_i d4ajc(a:)2} DA detMp[A] §[f[A] — ]

1

x DA detMp|[Alexp {_i d433f([A]5 37)2}

o DADxDx exp {—z’ d4a:d4y X(z)Mp([A]; z, y)x(y)}

1

xexp{—% d4:vf([A];:v)2},

where we have introduced the anti-commuting ghost fields x and . Note that this kind
of ideal gauge fixing does not choose just one gauge configuration on the gauge orbit, but
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rather is some Gaussian weighted average over gauge fields on the gauge orbit. We then
obtain

[ DgDgDADXDx O]...] "¢l

Q| T(O][...]) |10Q) = :
(QT(O[...]) |2) [ DyDIDADXDx ¢ %€

?

where
— — 4 [ 1 apy a 1 2 _ . -|
Sela,q, A, x,x] = dx [_ZF - 2% (F([A);2)*+ > as(ilp— mf)qu
f

+  d'zd'y x(z)Mr([Al; 2, y)x(y) .

We can now recover standard gauge fixing schemes as special cases of this generalized
form. First consider standard covariant gauge, which we obtain by taking

f([A]; x) = 0,A"(x) and by neglecting the fact that this leads to Gribov copies. We
need to evaluate M pr[A] in the vicinity of the gauge-fixing surface (specified by g):

59" (y) 5g"(y) M Sgh(y)]

Mpr([A]; y)ab — or(lA]; =) _ 6[0, A (z) — c(z)] amcSAa“(;c)

Under an infinitesimal gauge transformation about the FMR, dg = g — g, we have
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(A9, — (A9199) . where
(AT (z) = (AT)) () + gof "W’ (2) AL (2) — Buw®(z) + O(w?)

and hence near the gauge fixing surface (i.e., for small fluctations along the orbit around
AEMR) using Mp([A]; z, y)* = 8;3[5Aa“(:c)/5(5wb(y)])|w:0 we find

MF([A], , y)ab _ a;: <[_8$H5ab + gsfabCACM(QZ')](SM)(x _ y)> )

We then recover the standard covariant gauge-fixed form of the QCD action

1 aur a 1 — N
Sela, @, A, x, x] = d'z - YE,, — % (8, A"+ G (ip— my)ay
f

+(8,Xa) (8"8"" — g fapeA) Xb-

However, this gauge fixing has not removed the Gribov copies and so the formal
manipulations which lead to this action are not valid. This Lorentz covariant set of naive
gauges corresponds to a Gaussian weighted average over generalized Lorentz gauges,
where the gauge parameter £ is the width of the Gaussian distribution over the
configurations on the gauge orbit. Setting & = O we see that the width vanishes and we
obtain Landau gauge (equivalent to Lorentz gauge, 0" A, (x) = 0). Choosing £ = 1 is
referred to as “Feynman gauge” and so on. We can similarly derive the QCD action for
axial gauge.
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