Kinetyczna teoria gazów IV

Wykład ten jest wprowadzeniem do opisu zjawisk transportu. Wyliczone zostaną współczynniki przewodnictwa cieplnego i lepkości, a następnie wyprowadzone będą równania hydrodynamiki cieczy lepkiej. Wszystko to jednak zostanie poprzedzone omówieniem członu zderzeniowego równania kinetycznego w przybliżeniu czasu relaksacji, aby ułatwić znalezienie rozwiązania tego równania. Rozwiązanie to bowiem jest podstawą całości przedstawionych rozważań.

Przybliżenie czasu relaksacji

Skomplikowana postać członu zderzeniowego niezwykle utrudnia stosowanie równania Boltzmanna, więc poszukiwano różnych przybliżeń tego członu. Bodaj najprostszym jest <u>przybliżenie</u> czasu relaksacji, które tutaj omówimy.

• Człon zderzeniowy w przybliżeniu czasu relaksacji ma następującą postać

$$C(t, \mathbf{r}, \mathbf{p}) = \frac{1}{\tau} \Big(f^{\text{eq}}(t, \mathbf{r}, \mathbf{p}) - f(t, \mathbf{r}, \mathbf{p}) \Big), \tag{1}$$

gdzie parametr τ nazywa się właśnie czasem relaksacji, a $f^{\rm eq}(t,{\bf r},{\bf p})$ jest funkcją rozkładu lokalnej równowagi

$$f^{\rm eq}(t,\mathbf{r},\mathbf{p}) = \rho(t,\mathbf{r}) \left(\frac{2\pi}{mk_B T(t,\mathbf{r})}\right)^{3/2} \exp\left[-\frac{\left(\mathbf{p} - m\mathbf{u}(t,\mathbf{r})\right)^2}{2mk_B T(t,\mathbf{r})}\right].$$
(2)

• Aby uchwycić sens członu zderzeniowego (1), rozważymy układ, którego funkcja rozkładu zależy od czasu, lecz nie zależy od położenia. O funkcji równowagowej zakładamy, że też jest niezależna od czasu. Równaniem kinetycznym z członem zderzeniowym (1) jest wówczas

$$\frac{\partial f(t, \mathbf{p})}{\partial t} = \frac{f^{\text{eq}}(\mathbf{p}) - f(t, \mathbf{p})}{\tau},\tag{3}$$

a rozwiązanie łatwo znajdujemy jako

$$f(t,\mathbf{p}) = \left(f(0,\mathbf{p}) - f^{\mathrm{eq}}(\mathbf{p})\right)e^{-\frac{t}{\tau}} + f^{\mathrm{eq}}(\mathbf{p}).$$
(4)

Widzimy, że po czasie $t \gg \tau$ układ osiąga równowagę, czyli $f(t, \mathbf{p}) = f^{eq}(\mathbf{p})$. Parametr τ jest zatem charakterystycznym czasem zbliżania się układu do równowagi.

Gruba ocena czasu relaksacji au

Aby człon zderzeniowy (1) był w pełni określony, należy podać choćby przybliżoną wartość liczbową czasu relaksacji.

• Najprościej ocenić τ jako średni czas swobodnego przebiegu cząstki w gazie, który znajdujemy jako

$$\tau = \frac{\bar{l}}{\bar{v}},\tag{5}$$

gdzie \bar{v} jest średnią prędkością cząstki gazu, a \bar{l} średnią drogą swobodnego przebiegu lub prościej średnią drogą swobodną.

• \bar{v} ocenimy przyrównując energię kinetyczną cząstki o prędkości \bar{v} , czyli $\frac{1}{2}m\bar{v}^2$, z energią cieplną wynoszącą $\frac{3}{2}k_BT$, co daje

$$\bar{v} = \sqrt{\frac{3k_BT}{m}}.$$
(6)

• Aby wyznaczyć średnią drogę swobodną \bar{l} , rozważmy cząstkę, która właśnie doświadczyła zderzenia i pytamy po pokonaniu jakiej drogi cząstka zderzy się ponownie. Niech przekrój czynny na oddziaływanie cząstek gazu wynosi σ . Zderzenie nastąpi wówczas, gdy w cylindrze o polu podstawy σ i osi wzdłuż wektora prędkości cząstki znajdzie się inna cząstka gazu. A zatem średnią drogę swobodną \bar{l} wyznaczamy, żądając, aby w objętości cylindra o długości \bar{l} znalazła się jedna cząstka gazu tzn. $\bar{l}\sigma\rho = 1$, co daje

$$\bar{l} = \frac{1}{\rho\sigma} \tag{7}$$

• Podstawiając wzory (6, 7) do równania (5), otrzymujemy gruba ocenę czasu relaksacji

$$\tau = \frac{1}{\rho\sigma} \sqrt{\frac{m}{3k_B T}}.$$
(8)

Ze względu na mocno przybliżony charakter rozumowania prowadzącego do wzoru (8), nie należy przydawać istotnego znaczenia obecnemu w nim współczynnikowi liczbowemu.

Dokładniejsza ocena czasu relaksacji τ

• Dokładniejszą ocenę czasu relaksacji otrzymujemy przyrównując człon zderzeniowy Boltzmanna do wyrażenia (1). Zakładamy bowiem, że zachodzi przybliżona równość

$$\frac{f^{\rm eq}(\mathbf{p}) - f(t, \mathbf{r}, \mathbf{p})}{\tau} = \int \frac{d^3 p_1}{(2\pi)^3} d\Omega \left| \mathbf{v} - \mathbf{v}_1 \right| \frac{d\sigma}{d\Omega} \left[f(t, \mathbf{r}, \mathbf{p}') f(t, \mathbf{r}, \mathbf{p}_1') - f(t, \mathbf{r}, \mathbf{p}) f(t, \mathbf{r}, \mathbf{p}_1) \right].$$
(9)

Po obu stronach równania (9) są człony dodatnie i ujemne, więc żądamy

$$\frac{f(t,\mathbf{r},\mathbf{p})}{\tau} = \int \frac{d^3 p_1}{(2\pi)^3} d\Omega \left| \mathbf{v} - \mathbf{v}_1 \right| \frac{d\sigma}{d\Omega} f(t,\mathbf{r},\mathbf{p}) f(t,\mathbf{r},\mathbf{p}_1).$$
(10)

• Zakładając, że różniczkowy przekrój czynny słabo zależy od wielkości i kierunku pędu początkowego $\mathbf{p}+\mathbf{p}_1$, możemy wykonać całkowanie po kącie bryłowym, co upraszcza równość (10) do postaci

$$\frac{f(t,\mathbf{r},\mathbf{p})}{\tau} = \frac{\sigma}{m} \int \frac{d^3 p_1}{(2\pi)^3} \left|\mathbf{p} - \mathbf{p}_1\right| f(t,\mathbf{r},\mathbf{p}) f(t,\mathbf{r},\mathbf{p}_1).$$
(11)

• Aby wyznaczyć τ , można podzielić równość (11) obustronnie przez $f(t, \mathbf{r}, \mathbf{p})$, lecz wówczas uzyskany czas relaksacji τ będzie zależał od \mathbf{p} . Czyni to pewnie tę wielkość bardziej realistyczną, lecz przybliżenie czasu relaksacji traci na prostocie. Postąpimy więc inaczej, całkując obie strony równości (11) po \mathbf{p} . Pamiętając, że całkowanie po pędzie funkcji rozkładu daje gęstość, otrzymujemy

$$\frac{1}{\tau} = \frac{\sigma}{m\rho} \int \frac{d^3p}{(2\pi)^3} \frac{d^3p_1}{(2\pi)^3} |\mathbf{p} - \mathbf{p}_1| f(t, \mathbf{r}, \mathbf{p}) f(t, \mathbf{r}, \mathbf{p}_1).$$
(12)

• Przyjmiemy teraz, że funkcje rozkładu obecne w (12) mają postać równowagową tj.

$$f^{\rm eq}(\mathbf{p}) = \rho \left(\frac{2\pi}{mk_BT}\right)^{3/2} \exp\left[-\frac{\mathbf{p}^2}{2mk_BT}\right],\tag{13}$$

gdzie pominęliśmy prędkość unoszenia.

• Całkowanie we wzorze (12) najłatwiej wykonać wprowadzając zmienne środka masy: $\mathbf{P} = \frac{1}{2}(\mathbf{p} + \mathbf{p}_1)$ i $\mathbf{q} = \mathbf{p} - \mathbf{p}_1$. Wówczas całki po \mathbf{P} i po \mathbf{q} faktoryzują się i otrzymujemy

$$\frac{1}{\tau} = \frac{\sigma\rho}{m} \left(\frac{2\pi}{mk_BT}\right)^3 \int \frac{d^3P}{(2\pi)^3} \exp\left[-\frac{\mathbf{P}^2}{mk_BT}\right] \int \frac{d^3q}{(2\pi)^3} |\mathbf{q}| \exp\left[-\frac{\mathbf{q}^2}{4mk_BT}\right] = 4\sigma\rho \sqrt{\frac{k_BT}{\pi m}}, \quad (14)$$

co ostatecznie daje

$$\tau = \frac{1}{4\rho\sigma}\sqrt{\frac{\pi m}{k_B T}}.$$
(15)

• Uwzględniwszy, że $\frac{1}{\sqrt{3}} \approx 0.58$, a $\frac{\sqrt{\pi}}{4} \approx 0.44$, oceny (8) i (15) są zaskakująco zgodne. W dalszych rachunkach jednak zignorujemy mało dokładny współczynnik liczbowy i posługiwać się będziemy prostą oceną

$$\tau = \frac{1}{\rho\sigma} \sqrt{\frac{m}{k_B T}}.$$
(16)

Parametry azotu w warunkach normalnych

Aby zorientować się jakiego rzędu są rozważane parametry, przedstawimy ich wartości dla azotu w warunkach normalnych, czyli przy temperaturze 0 °C = 273 K oraz ciśnieniu 1 atm = 760 mmHg. Azot, który stanowi ok. 80% powietrza, występuje wówczas w postaci cząsteczek N₂, składających się z dwóch atomów najczęściej izotopu ¹⁴N, którego jądro tworzy siedem protonów i taka sama liczba neutronów.

- Gęstość masy azotu w warunkach normalnych wynosi $1.25\cdot 10^{-3}\,{\rm g\,cm^{-3}}.$
- Masa atomu ¹⁴N to 14 jednostek masy atomowej u (u = $1.66 \cdot 10^{-24}$ g), czyli $2.32 \cdot 10^{-23}$ g. A zatem masa molekuły N₂ wynosi $m = 4.64 \cdot 10^{-23}$ g.
- Gęstość cząsteczek N₂ w warunkach normalnych równa jest $\rho = 2.69 \cdot 10^{19} \,\mathrm{cm}^{-3}$.
- Średnica *a* molekuły N₂ wynosi ok. $2.5 \stackrel{\circ}{\text{A}} = 2.5 \cdot 10^{-8} \text{ cm}$. Ponieważ (klasyczny) przekrój czynny na zderzenie dwóch cząstek o średnicy *a* równy jest $\sigma = \pi a^2$, więc otrzymujemy $\sigma = 2.0 \cdot 10^{-15} \text{ cm}^2$.
- Średnia droga swobodna to $\bar{l} = (\rho \sigma)^{-1} = 1.9 \cdot 10^{-5} \,\mathrm{cm}.$
- Gdy T = 273 K, średnia prędkość molekuły wynosi $\bar{v} = \sqrt{\frac{3k_BT}{m}} = 4.9 \cdot 10^4 \frac{\text{cm}}{\text{s}}$, gdzie skorzystaliśmy z wartości $k_B = 1.38 \cdot 10^{-16} \frac{\text{g cm}^2}{\text{s}^2 \text{K}}$.
- Czas relaksacji równy jest $\tau = \overline{l} \, \overline{v}^{-1} = 3.9 \cdot 10^{-10} \, \text{s}.$

Rozwiązanie równania kinetycznego

Znajdziemy tutaj rozwiązanie równanie kinetycznego, które będzie podstawą dalszych rozważań.

• Równanie kinetyczne z członem zderzeniowym (1) wygląda następująco

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{p}) = \frac{1}{\tau} \left(f^{\text{eq}}(t, \mathbf{r}, \mathbf{p}) - f(t, \mathbf{r}, \mathbf{p}) \right).$$
(17)

• Ponieważ spodziewamy się, że rozwiązanie równania (17) dąży od lokalnej równowagi, więc będziemy poszukiwać go w postaci

$$f(t, \mathbf{r}, \mathbf{p}) = f^{\text{eq}}(t, \mathbf{r}, \mathbf{p}) + \delta f(t, \mathbf{r}, \mathbf{p}), \qquad (18)$$

przy czym zakładamy, że

$$f^{\rm eq}(t, \mathbf{r}, \mathbf{p}) \gg |\delta f(t, \mathbf{r}, \mathbf{p})|.$$
 (19)

• Podstawiamy teraz funkcję (18) do równania (17), a ze względu na warunek (19) pomijamy δf po lewej stronie równania. W ten sposób otrzymujemy

$$\delta f(t, \mathbf{r}, \mathbf{p}) = -\tau D_{\mathbf{v}} f^{\mathrm{eq}}(t, \mathbf{r}, \mathbf{p}), \qquad (20)$$

gdzie pochodną substancjalną oznaczyliśmy jako

$$D_{\mathbf{v}} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla.$$
⁽²¹⁾

• Obliczymy teraz prawą stronę równania (20)

$$D_{\mathbf{v}}f^{\mathrm{eq}} = \frac{\partial f^{\mathrm{eq}}}{\partial \rho} D_{\mathbf{v}}\rho + \frac{\partial f^{\mathrm{eq}}}{\partial u^{i}} D_{\mathbf{v}}u^{i} + \frac{\partial f^{\mathrm{eq}}}{\partial T} D_{\mathbf{v}}T, \qquad (22)$$

gdzie uwzględniliśmy, że równowagowa funkcja rozkładu (2) zależy od ρ , **u** i T. Obliczając pochodne po ρ , u^i i T, równanie (22) zapiszemy jako

$$\frac{D_{\mathbf{v}}f^{\rm eq}}{f^{\rm eq}} = \frac{1}{\rho}D_{\mathbf{v}}\rho + \frac{p^i - mu^i}{k_BT}D_{\mathbf{v}}u^i + \frac{1}{T}\left(\frac{(\mathbf{p} - m\mathbf{u})^2}{2mk_BT} - \frac{3}{2}\right)D_{\mathbf{v}}T.$$
(23)

• Założymy teraz, że ze względu na warunek (19) funkcje $\rho, {\bf u}$ iTspełniają równania hydrodynamiki idealnej

$$D_{\mathbf{u}}\rho + \rho\nabla \cdot \mathbf{u} = 0, \tag{24}$$

$$D_{\mathbf{u}}\mathbf{u} + \frac{1}{m\rho}\nabla p = 0, \tag{25}$$

$$D_{\mathbf{u}}T + \frac{2}{3}T\nabla \cdot \mathbf{u} = 0, \tag{26}$$

które pozwalają wyeliminować pochodne czasowe ρ , **u** i T z prawej strony równania (23). Po wykonaniu tego kroku i uwzględnieniu, że $p = \rho k_B T$, oraz zastąpieniu pędu **p** prędkością $\mathbf{v} \equiv \frac{\mathbf{p}}{m}$, otrzymujemy

$$\frac{D_{\mathbf{v}}f^{\text{eq}}}{f^{\text{eq}}} = \frac{m}{k_B T} \Big((v^i - u^i)(v^j - u^j)\nabla^j u^i - \frac{1}{3}(v^i - u^i)(v^i - u^i)\nabla^j u^j \Big) \\
+ \frac{1}{T} \Big(\frac{m}{2k_B T} (v^i - u^i)(v^i - u^i) - \frac{5}{2} \Big) (v^j - u^j)\nabla^j T.$$
(27)

• Wynik (27) podstawiony do równania (20) ostatecznie daje

$$\delta f = -\tau f^{\text{eq}} \bigg[\frac{m}{k_B T} \bigg((v^i - u^i)(v^j - u^j) \nabla^j u^i - \frac{1}{3} (v^i - u^i)(v^i - u^i) \nabla^j u^j \bigg) + \frac{1}{T} \bigg(\frac{m}{2k_B T} (v^i - u^i)(v^i - u^i) - \frac{5}{2} \bigg) (v^j - u^j) \nabla^j T \bigg].$$
(28)

W ten sposób znalezione zostało przybliżone rozwiązanie $f = f^{eq} + \delta f$ równania kinetycznego (17).

Warunki zgodności

Wykorzystanie równań hydrodynamiki idealnej (24, 25, 26) przy wyprowadzeniu poprawki (28) do równowagowej funkcji rozkładu sprawia, że poprawka ta spełnia trzy równania nazywane warunkami zgodności. Wyjaśnimy, o jakie warunki chodzi.

• Równowagowa funkcja rozkładu (2) wyrażona jest przez gęstość ρ , temperaturę T i prędkość u, co, jak pamiętamy, sprawia, że

$$\rho(t, \mathbf{r}) = \int \frac{d^3 p}{(2\pi)^3} f^{\text{eq}}(t, \mathbf{r}, \mathbf{p}) = \rho(t, \mathbf{r}), \qquad (29)$$

$$P^{i}(t,\mathbf{r}) = \int \frac{d^{3}p}{(2\pi)^{3}} p^{i} f^{\mathrm{eq}}(t,\mathbf{r},\mathbf{p}) = m\rho(t,\mathbf{r}) u^{i}(t,\mathbf{r}), \qquad (30)$$

$$\varepsilon(t,\mathbf{r}) = \int \frac{d^3p}{(2\pi)^3} \epsilon_{\mathbf{p}} f^{\mathrm{eq}}(t,\mathbf{r},\mathbf{p}) = \frac{1}{2} m\rho(t,\mathbf{r}) \mathbf{u}^2(t,\mathbf{r}) + \frac{3}{2} \rho \, k_B T(t,\mathbf{r}).$$
(31)

• Okazuje się, że wielkości ρ , T i **u**, które wchodzą do równowagowej funkcji rozkładu (2), zachowują swój sens, tzn. zachodzą równości (29, 30, 31) również wtedy, gdy do równowagowej funkcji rozkładu dodamy poprawkę δf . Oznacza to zachodzenie następujących warunków zgodności:

$$\int \frac{d^3 p}{(2\pi)^3} f^{\rm eq}(t, \mathbf{r}, \mathbf{p}) = \int \frac{d^3 p}{(2\pi)^3} f(t, \mathbf{r}, \mathbf{p}),$$
(32)

$$\int \frac{d^3p}{(2\pi)^3} p^i f^{\rm eq}(t, \mathbf{r}, \mathbf{p}) = \int \frac{d^3p}{(2\pi)^3} p^i f(t, \mathbf{r}, \mathbf{p}), \tag{33}$$

$$\int \frac{d^3 p}{(2\pi)^3} \epsilon_{\mathbf{p}} f^{\mathrm{eq}}(t, \mathbf{r}, \mathbf{p}) = \int \frac{d^3 p}{(2\pi)^3} \epsilon_{\mathbf{p}} f(t, \mathbf{r}, \mathbf{p}).$$
(34)

• Związki te powodują, że poprawka do funkcji rozkładu (28) nie wnosi wkładu do gęstości cząstek, pędu i energii, czyli

$$\int \frac{d^3p}{(2\pi)^3} \,\delta f(t,\mathbf{r},\mathbf{p}) = \int \frac{d^3p}{(2\pi)^3} \,p^i \delta f(t,\mathbf{r},\mathbf{p}) = \int \frac{d^3p}{(2\pi)^3} \,\epsilon_{\mathbf{p}} \delta f(t,\mathbf{r},\mathbf{p}) = 0. \tag{35}$$

 Można sprawdzić bezpośrednim rachunkiem, że warunki uzgodnienia (35) faktycznie zachodzą. W tym celu należy podstawić wyrażenie (28) do całek (35) i skorzystać z jawnej postaci równowagowej funkcji rozkładu (2). • Pokażemy spełnienie pierwszego, najprostszego warunku (35). W tym celu obliczamy

$$\int \frac{d^3 p}{(2\pi)^3} \,\delta f = -\tau \rho \left(\frac{m}{2\pi k_B T}\right)^{3/2} \int d^3 w \,\exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right]$$

$$\times \left[\frac{m}{k_B T} \left(w^i w^j \nabla^j u^i - \frac{1}{3} w^i w^i \nabla^j u^j\right) + \frac{1}{T} \left(\frac{m}{2k_B T} w^i w^i - \frac{5}{2}\right) w^j \nabla^j T\right],$$
(36)

gdzie podstawiliśmy równowagową funkcję rozkładu (2) i wprowadziliśmy zamiast pędu **p** prędkość $\mathbf{w} \equiv \mathbf{p}/m - \mathbf{u}$.

• W dalszym dowodzie warunku zgodności, a także w innych przedstawianych tutaj obliczeniach, skorzystamy z łatwych do wyprowadzenia relacji

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_B T}\right] w^i = 0, \tag{37}$$

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_BT}\right] w^i w^j = (2\pi)^{3/2} \left(\frac{k_BT}{m}\right)^{5/2} \delta^{ij},\tag{38}$$

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_BT}\right] w^i w^j w^k = 0, \tag{39}$$

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_BT}\right] \mathbf{w}^2 w^i w^j = 5(2\pi)^{3/2} \left(\frac{k_BT}{m}\right)^{7/2} \delta^{ij} \tag{40}$$

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_BT}\right] \mathbf{w}^4 w^i w^j = 35(2\pi)^{3/2} \left(\frac{k_BT}{m}\right)^{9/2} \delta^{ij},\tag{41}$$

$$\int d^3 w \, \exp\left[-\frac{m\mathbf{w}^2}{2k_BT}\right] w^i w^j w^k w^l = (2\pi)^{3/2} \left(\frac{k_BT}{m}\right)^{7/2} \left(\delta^{ij}\delta^{kl} + \delta^{ik}\delta^{jl} + \delta^{il}\delta^{jk}\right). \tag{42}$$

- Uwzględniając równości (37, 38, 39), prawa strona równania (36) znika. Podobnie dowodzimy spełnienia pozostałych dwóch warunków (35).
- W przedstawionym sposobie postępowania, warunki zgodności (35) pojawiły się jako konsekwencja faktu spełniania przez ρ , T i **u** równań hydrodynamiki cieczy idealnej. Można jednak postąpić inaczej: zażądać zachodzenia warunków zgodności, a spełnianie równań hydrodynamiki idealnej przez ρ , T i **u** będzie konsekwencją tego żądania.

Wielkości makroskopowe

W poprzednim wykładzie rozważyliśmy szczegółowo wielkości makroskopowe odpowiadające równowagowej funkcji rozkładu. Teraz określimy jakim modyfikacjom ulegają te wielkości po uwzględnieniu poprawki δf danej wzorem (28).

• Interesuje nas gęstość cząstek ρ , strumień cząstek **j**, gęstość pędu P^i , strumień pędu Π^{ij} ,

gęstość energi
i ε i strumień energii I. Jak pamiętamy, wielkości te
, zdefiniowane następująco

$$\rho(t,\mathbf{r}) \equiv \int \frac{d^3p}{(2\pi)^3} f(t,\mathbf{r},\mathbf{p}), \qquad \mathbf{j}(t,\mathbf{r}) \equiv \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{m} f(t,\mathbf{r},\mathbf{p}), \qquad (43)$$

$$P^{i}(t,\mathbf{r}) \equiv \int \frac{d^{3}p}{(2\pi)^{3}} p^{i}f(t,\mathbf{r},\mathbf{p}), \qquad \Pi^{ij}(t,\mathbf{r}) \equiv \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{i}p^{j}}{m} f(t,\mathbf{r},\mathbf{p}), \qquad (44)$$

$$\varepsilon(t,\mathbf{r}) \equiv \int \frac{d^3p}{(2\pi)^3} \epsilon_{\mathbf{p}} f(t,\mathbf{r},\mathbf{p}), \qquad \mathbf{I}(t,\mathbf{r}) \equiv \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{m} \epsilon_{\mathbf{p}} f(t,\mathbf{r},\mathbf{p}), \qquad (45)$$

spełniają trzy makroskopowe prawa zachowania, będące punktem wyjścia do wyprowadzenia równań hydrodynamiki.

• Warunki zgodności (35) sprawiają, że po dodaniu δf do f^{eq} nie ulegają zmianie: gęstość cząstek ρ , strumień cząstek **j**, gęstość pędu P^i i gęstość energii ε . Możemy więc przepisać znane już relacje

$$\mathbf{j} = \rho \,\mathbf{u}, \qquad \mathbf{P} = m\rho \,\mathbf{u}, \qquad \varepsilon = \frac{1}{2}m\rho \,\mathbf{u}^2 + \frac{3}{2}\rho \,k_B T.$$
 (46)

• Strumienie pędu Π^{ij} i energii I zmieniają się, więc piszemy

$$\Pi^{ij} = m\rho u^i u^j + \delta^{ij} \rho \, k_B T + \delta \Pi^{ij}, \tag{47}$$

$$\mathbf{I} = \frac{1}{2}m\rho\,\mathbf{u}^3 + \frac{5}{2}\rho\,\mathbf{u}\,k_BT + \delta\mathbf{I},\tag{48}$$

gdzie $\delta \Pi^{ij}$ i $\delta \mathbf{I}$ są wkładami, zwanymi dyssypatywnymi, do, odpowiednio, strumienia pędu i strumienia energii pochodzącymi od $\overline{\delta f}$.

• <u>Dyssypacja</u> to zjawisko, w którym przekaz energii ma charakter nieodwracalnego procesu termodynamicznego, więc towarzyszy mu produkcja entropii. Typowym przykładem zjawiska dyssypatywnego jest wszechobecne tarcie. Wkrótce się wyjaśni, dlaczego wielkości $\delta \Pi^{ij}$ i $\delta \mathbf{I}$ określiliśmy tym terminem.

Dyssypatywny strumień energii

• Obliczymy teraz dysspatywny strumień energii określony jako

$$\delta \mathbf{I} \equiv \int \frac{d^3 p}{(2\pi)^3} \, \frac{\mathbf{p}}{m} \, \epsilon_{\mathbf{p}} \delta f. \tag{49}$$

• Podstawiając δf dane wzorem (28) do formuły (49) dostajemy

$$\delta \mathbf{I} = -\frac{\tau \rho m^4}{2^{5/2} (\pi m k_B T)^{3/2}} \int d^3 w \, (\mathbf{w} + \mathbf{u})^3 \exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right]$$
(50)

$$\times \left[\frac{m}{k_B T} \left(w^i w^j \nabla^j u^i - \frac{1}{3} \mathbf{w}^2 \nabla^j u^j\right) + \frac{1}{T} \left(\frac{m}{2k_B T} \mathbf{w}^2 - \frac{5}{2}\right) w^j \nabla^j T\right],$$

gdzie zamiast pędu **p** wprowadziliśmy prędkość $\mathbf{w} \equiv \mathbf{p}/m - \mathbf{u}$. Pomijając człony będące nieparzystymi funkcjami \mathbf{w} , które znikają po wykonaniu całkowania, strumień (50) zapisujemy jako sumę

$$\delta \mathbf{I} = \delta \mathbf{I}_1 + \delta \mathbf{I}_2 + \delta \mathbf{I}_3 + \delta \mathbf{I}_4,\tag{51}$$

gdzie

$$\delta \mathbf{I}_1 \equiv -\frac{\tau \rho m^4}{2^{5/2} (\pi m k_B T)^{3/2} T} \int d^3 w \, \mathbf{w}^3 \exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right] \left(\frac{m}{2k_B T} \, \mathbf{w}^2 - \frac{5}{2}\right) w^j \nabla^j T, \qquad (52)$$

$$\delta \mathbf{I}_{2} \equiv -\frac{3\tau\rho \, m^{5}\mathbf{u}}{2^{5/2}(\pi m)^{3/2}(k_{B}T)^{5/2}} \int d^{3}w \, \mathbf{w}^{2} \exp\left[-\frac{m\mathbf{w}^{2}}{2k_{B}T}\right] \left(w^{i}w^{j}\nabla^{j}u^{i} - \frac{1}{3}\mathbf{w}^{2}\nabla^{j}u^{j}\right), (53)$$

$$\delta \mathbf{I}_3 \equiv -\frac{3\tau\rho \, m^4 \mathbf{u}^2}{2^{5/2} (\pi m k_B T)^{3/2} T} \int d^3 w \, \mathbf{w} \exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right] \left(\frac{m}{2k_B T} \, \mathbf{w}^2 - \frac{5}{2}\right) w^j \nabla^j T, \qquad (54)$$

$$\delta \mathbf{I}_{4} \equiv -\frac{\tau \rho \, m^{5} \mathbf{u}^{3}}{2^{5/2} (\pi m)^{3/2} (k_{B}T)^{5/2}} \int d^{3}w \, \exp\left[-\frac{m \mathbf{w}^{2}}{2k_{B}T}\right] \left(w^{i} w^{j} \nabla^{j} u^{i} - \frac{1}{3} \mathbf{w}^{2} \nabla^{j} u^{j}\right). \tag{55}$$

• Wykorzystując formuły (37-41) znajdujemy

$$\delta \mathbf{I}_1 = -\frac{5}{2} \tau \rho \, k_B^2 T \, \nabla T, \qquad \delta \mathbf{I}_2 = \delta \mathbf{I}_3 = \delta \mathbf{I}_4 = 0, \tag{56}$$

co ostatecznie daje

$$\delta \mathbf{I} = -\frac{5}{2} \tau \rho \, k_B^2 T \, \nabla T. \tag{57}$$

Widzimy, że do dyssypatywnego strumienia energii wnosi wkład gradient temperatury, nie wnosi natomiast gradient prędkości, choć oba są obecne w wyrażeniu na δf . Wyrównywanie się temperatur jest procesem nieodwracalnym, co uzasadnia właśnie stosowanie terminu strumień dyssypatywny.

Przewodnictwo ciepła

• Po podstawieniu wyrażenia (57) do wzoru (48) znajdujemy całkowity strumień energii

$$\mathbf{I} = \frac{1}{2}m\rho\,\mathbf{u}^3 + \frac{5}{2}\rho\,\mathbf{u}\,k_BT - \frac{5}{2}\tau\rho\,k_B^2T\,\nabla T.$$
(58)

Pierwsze dwa człony formuły (84) odpowiadają transportowi energii powodowanemu niezerową prędkości unoszenia \mathbf{u} , który zamiera, gdy $\mathbf{u} = 0$. Strumieniem ciepła \mathbf{q} nazywamy przepływ energii na skutek występowania gradientu temperatury. A zatem mamy

$$\mathbf{q} = -\frac{5}{2}\tau\rho\,k_B^2 T\,\nabla T.\tag{59}$$

Zauważmy, że zgodnie z oczekiwaniami przepływ energii następuje w kierunku zmniejszania się temperatury, bowiem współczynnik $\tau\rho\,k_B^2T$ jest dodatni.

• Równanie (59) zgadza się ustanowioną na drodze eksperymentalnej prawidłowością, zwaną prawem Fouriera, że przepływ ciepła **q** jest proporcjonalny do gradientu temperatury tj.

$$\mathbf{q} = -\kappa \nabla T,\tag{60}$$

gdzie κ jest współczynnikiem przewodnictwa cieplnego.

• Porównując równanie (59) z równaniem (60), znajdujemy współczynnik κ jako

$$\kappa = \frac{5}{2} \tau \rho \, k_B^2 T,\tag{61}$$

który po uwzględnieniu oceny czasu relaksacji (16) przybiera postać

$$\kappa = \frac{5}{2} \frac{k_B \sqrt{mk_B T}}{\sigma}.$$
(62)

Wyróżniająca cechą współczynnika κ jest jego niezależność od gęstości gazu i pierwiastkowa zależność od temperatury. Przewodnictwo cieplne rozrzedzonych gazów rzeczywiście wykazuje takie zachowanie.

Dyssypatywny strumień pędu

• Obliczymy teraz dysspatywny strumień pędu określony jako

$$\delta \Pi^{ij} \equiv \int \frac{d^3p}{(2\pi)^3} \, \frac{p^i p^j}{m} \, \delta f. \tag{63}$$

• Podstawiając δf dane wzorem (28) do formuły (63) dostajemy

$$\delta\Pi^{ij} = -\frac{\tau\rho m^4}{(2\pi m k_B T)^{3/2}} \int d^3w \left(w^i + u^i\right) \left(w^j + u^j\right) \exp\left[-\frac{m\mathbf{w}^2}{2k_B T}\right]$$

$$\times \left[\frac{m}{k_B T} \left(w^k w^l \nabla^l u^k - \frac{1}{3}\mathbf{w}^2 \nabla^k u^k\right) + \frac{1}{T} \left(\frac{m}{2k_B T}\mathbf{w}^2 - \frac{5}{2}\right) w^k \nabla^k T\right],$$
(64)

gdzie zamiast pędu **p** wprowadziliśmy prędkość $\mathbf{w} \equiv \mathbf{p}/m - \mathbf{u}$. Pomijając człony będące nieparzystymi funkcjami \mathbf{w} , które znikają po wykonaniu całkowania, strumień (64) zapisujemy jako sumę

$$\delta\Pi^{ij} = \delta\Pi_1^{ij} + \delta\Pi_2^{ij} + \delta\Pi_3^{ij} + \delta\Pi_4^{ij}, \tag{65}$$

gdzie

$$\delta\Pi_{1}^{ij} = -\frac{\tau\rho m^{7/2}}{(2\pi)^{3/2} (k_{B}T)^{5/2}} \int d^{3}w \exp\left[-\frac{m\mathbf{w}^{2}}{2k_{B}T}\right] w^{i}w^{j} \left(w^{k}w^{l}\nabla^{l}u^{k} - \frac{1}{3}\mathbf{w}^{2}\nabla^{k}u^{k}\right), \quad (66)$$

$$\delta\Pi_2^{ij} = -\frac{\tau\rho \, m^{5/2} u^j}{(2\pi)^{3/2} (k_B T)^{3/2} T} \int d^3 w \, \exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right] \left(\frac{m}{2k_B T} \, \mathbf{w}^2 - \frac{5}{2}\right) w^i w^k \nabla^k T, \quad (67)$$

$$\delta\Pi_{3}^{ij} = -\frac{\tau\rho \, m^{5/2} u^{i}}{(2\pi)^{3/2} (k_{B}T)^{3/2}T} \int d^{3}w \, \exp\left[-\frac{m\mathbf{w}^{2}}{2k_{B}T}\right] \left(\frac{m}{2k_{B}T}\,\mathbf{w}^{2} - \frac{5}{2}\right) w^{j} w^{k} \nabla^{k}T, \quad (68)$$

$$\delta\Pi_4^{ij} = -\frac{\tau\rho \, m^{7/2} u^i u^j}{(2\pi)^{3/2} (k_B T)^{5/2}} \int d^3 w \, \exp\left[-\frac{m \mathbf{w}^2}{2k_B T}\right] \left(w^k w^l \nabla^l u^k - \frac{1}{3} \mathbf{w}^2 \nabla^k u^k\right). \tag{69}$$

• Wykorzystując formuły (37-42) znajdujemy

$$\delta\Pi_1^{ij} = -\tau\rho \, k_B T \Big[\nabla^i u^j + \nabla^j u^i - \frac{2}{3} \delta^{ij} \nabla^k u^k \Big],\tag{70}$$

Rysunek 1: Schemat konfiguracji służącej zdefiniowaniu współczynnika lepkości.

$$\delta\Pi_2^{ij} = \delta\Pi_3^{ij} = \delta\Pi_4^{ij} = 0, \tag{71}$$

co ostatecznie daje

$$\delta\Pi^{ij} = -\tau\rho \,k_B T \Big[\nabla^i u^j + \nabla^j u^i - \frac{2}{3}\delta^{ij}\nabla^k u^k\Big]. \tag{72}$$

Widzimy, że do dyssypatywnego strumienia pędu wnosi wkład gradient prędkości, nie wnosi zaś gradient temperatury, choć oba są obecne w wyrażeniu na δf . Transport pędu powoduje wyrównywanie się prędkości czemu towarzyszy tarcie. Jest to proces nieodwracalny, co uzasadnia użycie terminu strumień *dyssypatywny*.

• Całkowity strumień pędu Π^{ij} wynosi

$$\Pi^{ij} = m\rho u^{i}u^{j} + \delta^{ij}\rho k_{B}T - \tau\rho k_{B}T \left[\nabla^{i}u^{j} + \nabla^{j}u^{i} - \frac{2}{3}\delta^{ij}\nabla^{k}u^{k}\right].$$
(73)

Lepkość

- Rozważmy pokazany na Rys. 1 schemat przepływu gazu. Hydrodynamiczna prędkość skierowana jest wzdłuż osi x tzn. $\mathbf{u} = (u_x, 0, 0)$, przy czym zakładamy, że u_x zależy od współrzędnej y, jest natomiast niezależna od z.
- Badając doświadczalnie przepływy gazów i cieczy w takiej konfiguracji, stwierdzono, że siła tarcia F działająca wzdłuż osi x na jednostkową powierzchnię A znajdującą w płaszczyźnie xz (patrz Rys. 1) jest proporcjonalna do gradientu prędkości przepływu, czyli

$$\frac{F}{A} = -\eta \frac{\partial u_x}{\partial y},\tag{74}$$

gdzie stała proporcjonalności η nosi nazwę współczynnika lepkości.

• Składowa strumienia pędu Π^{xy} jest równa pędowi skierowanemu wzdłuż osi x przeniesionemu w kierunku osi y w jednostce czasu przez jednostkową powierzchnię w płaszczyźnie xz. Innymi słowy jest to siła działająca wzdłuż osi x na jednostkę powierzchni w płaszczyźnie xz. A zatem, $\Pi^{xy} = F/A$.

• Skoro $\mathbf{u} = (u_x, 0, 0)$, to ze wzoru (73) odczytujemy

$$\Pi^{xy} = -\tau \rho \, k_B T \frac{\partial u_x}{\partial y} \tag{75}$$

i stwierdzamy, że

$$\eta = \tau \rho \, k_B T. \tag{76}$$

• Po uwzględnieniu oceny czasu relaksacji (16), współczynnik lepkości wynosi

$$\eta = \frac{\sqrt{mk_BT}}{\sigma}.\tag{77}$$

Nie zależy on od gęstości gazu i rośnie jak pierwiastek kwadratowy z temperatury.

• Porównując współczynnik przewodnictwa cieplnego (61) do współczynnika lepkości (76), znajdujemy relację

$$\frac{\kappa}{k_B\eta} = \frac{5}{2},\tag{78}$$

potwierdzaną przez eksperyment.

Hydrodynamika cieczy lepkiej

Poprzednio wyprowadziliśmy równania hydrodynamiki cieczy idealnej. Teraz uwzględnimy poprawki wynikające z istnienia dyszypatywnych wkładów do strumienia pędu i ciepła.

• Równania hydrodynamiki cieczy lepkiej otrzymujemy, wstawiając do omówionych już wcześniej trzech makroskopowych praw zachowania

$$\frac{\partial \rho(t, \mathbf{r})}{\partial t} + \nabla \cdot \mathbf{j}(t, \mathbf{r}) = 0, \qquad (79)$$

$$\frac{\partial P^{i}(t,\mathbf{r})}{\partial t} + \nabla^{j}\Pi^{ij}(t,\mathbf{r}) = 0, \qquad (80)$$

$$\frac{\partial \varepsilon(t, \mathbf{r})}{\partial t} + \nabla \cdot \mathbf{I}(t, \mathbf{r}) = 0, \qquad (81)$$

gęstość cząstek ρ , strumień cząstek **j**, gęstości pędu P^i i energii ε dane wzorami

$$\mathbf{j} = \rho \,\mathbf{u}, \qquad \mathbf{P} = m\rho \,\mathbf{u}, \qquad \varepsilon = \frac{1}{2}m\rho \,\mathbf{u}^2 + \frac{3}{2}\rho \,k_B T$$
(82)

oraz strumienie pędu Π^{ij} i energii ${\bf I}$

$$\Pi^{ij} = m\rho \, u^i u^j + \delta^{ij} \rho \, k_B T - \eta \Big[\nabla^i u^j + \nabla^j u^i - \frac{2}{3} \delta^{ij} \nabla^k u^k \Big], \tag{83}$$

$$\mathbf{I} = \frac{1}{2}m\rho\,\mathbf{u}^3 + \frac{5}{2}\rho\,\mathbf{u}\,k_BT - \kappa\,\nabla T,\tag{84}$$

w których pojawiły się współczynniki transportu κ i η .

• Pierwsze równanie, wyrażające zachowanie liczby cząstek, jest takie samo jak w przypadku hydrodynamiki cieczy idealnej, bowiem gęstość cząstek ρ i ich strumień **j** nie są modyfikowane przez wkłady dyssypatywne. A zatem mamy

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \rho + \rho \nabla \cdot \mathbf{u} = 0.$$
(85)

 Podstawiając gęstość i strumień pędu (82, 83) do równania ciągłości (80) dostajemy, wykorzystawszy równość (85), słynne równanie Navier–Stokesa¹

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} + \frac{1}{m\rho} \nabla \left(p - \frac{\eta}{3} \nabla \cdot \mathbf{u}\right) - \frac{\eta}{m\rho} \nabla^2 \mathbf{u} = 0, \tag{86}$$

w którym pjest ciśnieniem danym w rozważanym przypadku przez równanie stanu gazu doskonałego

$$p = \rho \, k_B T. \tag{87}$$

- Równanie Navier–Stokesa, które przechodzi w równanie Eulera, gdy η = 0, stanowi fundament mechaniki płynów. Choć wyprowadzone tutaj dla rozrzedzonego gazu, obszar jego stosowalności obejmuje również ciecze. Proste na pozór równanie Navier–Stokesa (86) jest tak w rzeczywistości złożone, głównie ze względu na nieliniowy charakter, że nawet w przypadku nieściśliwego płynu, kiedy ∇ · u = 0, nie są znane jego ogólne rozwiązania. Równanie przewiduje występowanie w pewnych warunkach turbulencji chaotycznego przepływu cieczy lepkiej. Przypuszcza się, że tajemnica tego wciąż słabo rozumianego zjawiska skryta jest właśnie w strukturze równania (86).
- Podstawiając gęstość energii (82) i strumień energii (84) do równania ciągłości (81), otrzymujemy równanie

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) T + \frac{2}{3} T \nabla \cdot \mathbf{u} - \frac{2\kappa}{3\rho} \nabla^2 T = 0.$$
(88)

Aby je uzyskać, skorzystaliśmy z równań (85, 86).

• Jeśli w równaniu (88) położyć $\mathbf{u} = 0$, otrzymujemy znane równanie przewodnictwa cieplnego

$$\left(\frac{\partial}{\partial t} - \alpha \nabla^2\right) T = 0, \tag{89}$$

gdzie $\alpha \equiv \frac{2\kappa}{3\rho}$. Równanie (89) ma identyczną postać jak <u>równanie dyfuzji</u>, w którym *T* reprezentuje gęstość dyfundujących cząstek, a α jest stałą dyfuzji. W odróżnieniu od (88), równanie (89) można łatwo rozwiązać.

- Równania (85, 86, 88), których w sumie jest pięć, tworzą <u>układ równań hydrodynamiki</u> cieczy lepkiej. Wchodzi do nich sześć nieznanych funkcji czasu i położenia: ρ , **u**, p, T, więc należy jeszcze dodać równanie stanu (87), żeby układ równań domknąć.
- Analiza równań (85, 86, 88) i poszukiwanie ich rozwiązań jest domeną nader obszernej dziedziny wiedzy jaką jest mechanika ośrodków ciągłych. Nie będziemy się w nią tutaj zagłębiać. Naszym głównym celem było pokazanie, że teoria kinetyczna umożliwia wyprowadzenie równań hydrodynamiki, tak cieczy idealnej, jak i lepkiej.

¹Nazwa równania pochodzi od nazwisk Claude'a-Louis Navier (1785 - 1836) - francuskiego inżyniera i fizyka oraz George'a Gabriela Stokes (1819 – 1903) - brytyjskiego matematyka i fizyka.