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Quasiparticles of boson gas
In Lecture IV we have discussed thermodynamic characteristics of a weakly interacting boson

gas in equilibrium using the imaginary time formalism. The system has been described by means
of the Lagrangian density

L(x) =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x)− λ

4!
φ4(x), (1)

where φ(x) is the real scalar field, m is the mass parameter and λ is the coupling constant which
is assumed to be a small number. We have found that the energy and pressure, which include
the first order corrections, are

U =
π2V T 4

30

[
1− 5λ

64π2

]
, p =

π2T 4

90

[
1− 5λ

64π2

]
. (2)

In this lecture properties of gas constituents – quasiparticles – will be studied applying the
real-time formalism of statistical QFT. We will use again the Lagrangian density (1).

Dispersion equation

• Quasiparticles are either particles whose properties are modified due to particle interaction
with a medium or they are particle-like collective excitations of a medium. In both cases
the medium behaves as if it contained weakly interacting particles.

• The main characteristics of a quasiparticle is a dispersion relation which gives the energy
as a function of momentum of a quasiparticle.

• In the absence of interaction, the dispersion equation is p2 − m2 = 0, and consequently,
Ep = ±

√
m2 + p2, where the sign + is for particles and − for antiparticles.

• The dispersion relation is determined by a position of a pole of the retarded Green’s function.
Since the retarded Green’s function is, as we remember, of the form

∆+(p) =
1

p2 −m2 + Π+(p)
, (3)

where Π+(p) is the self energy, the dispersion relation is a solution of the equation

p2 −m2 + Π+(p) = 0. (4)

• To grasp a physical meaning of the dispersion equation (4) it is useful to consider a field
equation of motion

(� +m2)〈φ̂(x)〉 =
1

3!
〈φ̂3(x)〉, (5)
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Figure 1: The first order contribution to the retarded Green’s function
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which is rewritten as

(� +m2)〈φ̂(x)〉 =

∫
d4x′Π+(x− x′)〈φ̂(x′)〉, (6)

where we have introduced the retarded self-energy to solve the equation as an initial value
problem. Performing the Fourier transformation, we get(

p2 −m2 + Π+(p)
)
〈φ̂(p)〉 = 0. (7)

• There is a nontrivial solution of the equation (7) if p2 −m2 + Π+(p) = 0. So, we see that
the dispersion equation provides a necessary condition for an existence of solutions to the
field equation.

• The solution of Eq. (7) is of the form

〈φ̂(p)〉 ∼ δ
(
p2 −m2 + Π+(p)

)
, (8)

and consequently,

〈φ̂(x)〉 ∼
∑
n

Cn exp
[
− i
((
ωn(p) + iγn(p)

)
t− p · r

)]
, (9)

where x ≡ (t, r) and ωn(p)+iγn(p) is a solution of the dispersion equation with the functions
ωn(p) and γn(p) being both real.

• We note that the self energy Π+(p) is, in general, a complex valued function, and conse-
quently a solution of the dispersion equation is complex.

• As one observes, the amplitude of the solution (9) is time dependent through the factor
eγn(p)t. When γn(p) < 0, a quasiparticle excitation is damped or a quasiparticle has a finite
lifetime τ = 1/γn(p). When γn(p) > 0 the amplitude exponentially grows and we deal
with an instability. When γn(p) = 0, the quasiparticles are stable – the field amplitude is
constant as a function of time.

First order dispersion relation

• The first order correction to the retarded Green’s function is represented by the diagram
shown in Fig. 11 and it is given as

∆+
(1)(x− y) =

iλ

2

∫
d4z∆+

0 (x, z) ∆>
0 (z, z) ∆+

0 (z, y), (10)

which can be rewritten as

∆+
(1)(x) =

iλ

2
∆>

0 (0)

∫
d4z∆+

0 (x− z) ∆+
0 (z). (11)

• As we remember, only the connected diagrams should be taken into account.

• After the Fourier transformation, the equation (11) becomes

∆+
(1)(p) =

iλ

2
∆>

0 (x = 0) ∆+
0 (p) ∆+

0 (p). (12)
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• Comparing the formula (12) with

∆+(p) = ∆+
0 (p)−∆+

0 (p) Π+
(1)(p) ∆+

0 (p), (13)

one finds that

Π+
(1)(p) = −iλ

2
∆>

0 (x = 0). (14)

• Since

i∆>
0 (x) =

∫
d3k

(2π)3
1

2ωk

[(
f(ωk) + 1

)
e−ikx + f(ωk)eikx

]
, (15)

where the boson distribution function equals

f(ωk) ≡ 1

eβωk − 1
, (16)

and ωk ≡
√
m2 + k2, we have

Π+
(1)(p) = −λ

2

∫
d3k

(2π)3
2f(ωk) + 1

2ωk

. (17)

• After performing the trivial angular integral, Eq. (17) becomes

Π+
(1)(p) = − 1

8π2

∫ ∞
0

dk k2√
m2 + k2

1 + e−β
√
m2+k2

1− e−β
√
m2+k2

. (18)

• Since for k � m and k � T the integrand linearly grows with k, the integral in Eq. (18) is
quadratically divergent. One observes that the divergence remains in the zero temperature
limit that is when β → ∞. Therefore, it is the ultraviolet divergence which is well known
in vacuum QFT.

• To get a finite result one should subtract the vacuum contribution from the formula (18).
Since f(ωk) = 0 in vacuum, the subtraction is done as follows

Π+
R(p) ≡ −λ

2

∫
d3k

(2π)3
2f(ωk) + 1

2ωk

+
λ

2

∫
d3k

(2π)3
1

2ωk

= −λ
2

∫
d3k

(2π)3
f(ωk)

ωk

(19)

and Π+
R(p) is the renormalized self energy, which is finite, and it equals

Π+
R(p) = − λ

4π2

∫ ∞
0

dk k2√
m2 + k2

1

eβ
√
m2+k2 − 1

. (20)

• If m� T , we can put m = 0 under the integral (20). Then, one finds

Π+
R(p) = − λ

4π2

∫ ∞
0

dk k

eβk − 1
= −λT

2

4π2

∫ ∞
0

dx x

ex − 1︸ ︷︷ ︸
=π2

6

= −λT
2

24
. (21)

• Defining an effective mass of a quasiparticle as

m2
∗ ≡ m2 − Π+

R(m,p = 0), (22)

one finds that

m2
∗ =

λT 2

24
, (23)

if m� T .
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• We see that bosons, which are massless in vacuum, become massive in the gas that is they
acquire the thermal mass (23).

• Since Π+
(1)(p) is pure real, the quasiparticles are stable at the first order of perturbative

expansion.


