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Quasiparticles of boson gas

In Lecture IV we have discussed thermodynamic characteristics of a weakly interacting boson
gas in equilibrium using the imaginary time formalism. The system has been described by means
of the Lagrangian density

£x) = 50"0(2)0u0(z) — 5mPd(a) — 5 6'(0) )

where ¢(z) is the real scalar field, m is the mass parameter and A is the coupling constant which
is assumed to be a small number. We have found that the energy and pressure, which include
the first order corrections, are

0= [ ) r= 55 (1~ gawi) 2

In this lecture properties of gas constituents — quasiparticles — will be studied applying the
real-time formalism of statistical QFT. We will use again the Lagrangian density (1).

Dispersion equation

e Quasiparticles are either particles whose properties are modified due to particle interaction
with a medium or they are particle-like collective excitations of a medium. In both cases
the medium behaves as if it contained weakly interacting particles.

e The main characteristics of a quasiparticle is a dispersion relation which gives the energy
as a function of momentum of a quasiparticle.

e In the absence of interaction, the dispersion equation is p*> — m? = 0, and consequently,
E, = £1/m? + p?, where the sign + is for particles and — for antiparticles.

e The dispersion relation is determined by a position of a pole of the retarded Green’s function.
Since the retarded Green’s function is, as we remember, of the form
1
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where IT*(p) is the self energy, the dispersion relation is a solution of the equation

p> —m? +1I"(p) = 0. (4)

e To grasp a physical meaning of the dispersion equation (4) it is useful to consider a field
equation of motion
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Figure 1: The first order contribution to the retarded Green’s function
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which is rewritten as

~

@+ m?)((x)) = / 22/ T (2 — /) (o), (6)

where we have introduced the retarded self-energy to solve the equation as an initial value
problem. Performing the Fourier transformation, we get

(v — m? + T (1) ((p)) = 0. )

There is a nontrivial solution of the equation (7) if p> — m? + II*(p) = 0. So, we see that
the dispersion equation provides a necessary condition for an existence of solutions to the
field equation.

The solution of Eq. (7) is of the form

(D(p)) ~ 6 (p* — m? +1TF(p)), (8)

and consequently,
(B(@)) ~ D Coexp | =i (wnlp) +im(P)t =P 1), (9)

where x = (t,r) and w,(p)+iv,(p) is a solution of the dispersion equation with the functions
wn(p) and v, (p) being both real.

We note that the self energy IT*(p) is, in general, a complex valued function, and conse-
quently a solution of the dispersion equation is complex.

As one observes, the amplitude of the solution (9) is time dependent through the factor
e" (P}t When 7, (p) < 0, a quasiparticle excitation is damped or a quasiparticle has a finite
lifetime 7 = 1/7,(p). When 7,(p) > 0 the amplitude exponentially grows and we deal
with an instability. When ~,(p) = 0, the quasiparticles are stable — the field amplitude is
constant as a function of time.

First order dispersion relation

The first order correction to the retarded Green’s function is represented by the diagram
shown in Fig. 11 and it is given as

IA
A=) =5 [ ' A5 (w.2) 87 2) Af ), (10)
which can be rewritten as
A
Aa)(aj) =5 A7 (0) /d4z Af(z—2) AL (2). (11)

e As we remember, only the connected diagrams should be taken into account.
e After the Fourier transformation, the equation (11) becomes
i

Ay (p) = 5 A (z = 0) A (p) Ag (). (12)
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e Comparing the formula (12) with

AT(p) = Ag(p) — AJ () IT (p) AG (), (13)
one finds that "

i

Iy (p) = = A5 (= 0) (14)
e Since
iAy (x) = /ﬂi (f(wi) +1)e ™ + flw)e™ (15)
0 (27)3 2wy 8 8 ’
where the boson distribution function equals
1

flow) = o (16)

and wy = vm? + k2, we have

N[ Bk 2f(w) + 1
I = —— . 17
b =5 [ o e a7
e After performing the trivial angular integral, Eq. (17) becomes
1 [® dkk? 1+4ePVmTHR?
T, re (18)
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e Since for k> m and k > T the integrand linearly grows with k, the integral in Eq. (18) is
quadratically divergent. One observes that the divergence remains in the zero temperature
limit that is when 8 — oco. Therefore, it is the ultraviolet divergence which is well known
in vacuum QFT.

e To get a finite result one should subtract the vacuum contribution from the formula (18).
Since f(wg) = 0 in vacuum, the subtraction is done as follows

A Bk 2f(we) +1 A k1 A Bk flw
HE(p)E__/ 3 = +_/ 3_:__/ 3 ) (19)
2 ) (2m) 2wy 2 ) (2m)3 2wy 2 ) (2m)?  wk
and I} (p) is the renormalized self energy, which is finite, and it equals
A [ dkk? 1
+ - _
Uelt) = =33 |, Jmas e -1 (20)
o If m < T, we can put m = 0 under the integral (20). Then, one finds
A [ dkEk A% [ dox T2
#(P) 47r2/0 ek 1 47r2/0 e — 1 24 (21)
_n2
6
e Defining an effective mass of a quasiparticle as
m2 =m® — I} (m,p = 0), (22)
one finds that T2
2= 23

tfm<T.
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e We see that bosons, which are massless in vacuum, become massive in the gas that is they
acquire the thermal mass (23).

e Since Ha)(p) is pure real, the quasiparticles are stable at the first order of perturbative

expansion.



